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Abstract—Federated learning is an increasingly common tech-
nique used within machine learning that allows multiple de-
vices to collectively train a model without necessitating the
centralization of data. This approach is highly valuable within
medical tasks, where privacy concerns within patient datasets can
be mitigated through the decentralization of machine learning
training. Within past literature, there have remained difficulties
in constructing well annotated, large chest X-ray datasets due
to these patient privacy concerns. In this paper, we seek to
demonstrate the validity of federated learning by training a
deep learning model on decentralized Chest X-ray imaging data.
We utilize the publicly available NIH Chest X-ray dataset to
train our model. Five clients were trained over 10 rounds,
and a ResNet-34 global model was initialized and moved to
a GPU, where clients iterated over each round to update the
model. We initialized a new parameter accumulation dictionary
for each round that was outfitted with Secure Aggregation
algorithm with in-built additive homomorphic encryption of local
parameters towards parameter averaging. The model achieved
a validation loss of 0.09 and an accuracy of 0.83. These results
indicate that the outlined federated learning approach was able to
approach benchmark clinical grade accuracy, demonstrating the
effectiveness of federated learning in advanced medical imaging
analysis with the preservation of patient privacy.

Index Terms—Federated Learning, Chest X-ray Imaging,
Medical Imaging, Deep Learning, ResNet-34, Patient Privacy,
Decentralized Machine Learning, Healthcare Data, Distributed
Training, Validation Accuracy

I. INTRODUCTION

Chest radiography or the chest X-ray is among one of

the most common medical imaging exams in the world,

with industrialized nations reporting 23.8 percent of their

population acquiring erect-view chest X-ray images [1]. Chest

radiography imaging exams provide a benefit over traditional

clinical examinations because they remain accessible, afford-

able, portable in hospitals, and generally non-invasive with less

radiation exposure, and can be used for advanced prognostic

indications. Currently, chest radiography is typically used

as a first-line imaging tool to diagnose a wide range of

thoracic diseases, particularly those affecting the lungs, heart,

and other regions of the chest cavity, such as pneumonia

and tuberculosis, and lung cancers. However, even with the

widespread multipurpose image applications of X-ray, accurate

patient diagnosis remains a widespread challenge because

patient abnormalities must be interpreted diligently. Further,

diagnoses are prone to inter-observer variability due to the

process of visual diagnosis itself being intrinsically subjective.

Recently, developments within surrogate and deep learning

based imaging applications have simplified the automated

analysis across a wide range of medical imaging, such as MRI

and X–ray [2]. For example, image annotation tools using deep

learning algorithms have achieved clinical grade accuracy in

the end-to-end detection, classification, and eventual prognosis

of diseases such as breast cancer, lung cancer, and diabetic

retinopathy. However, because these models involve millions

of parameters, deep learning models must train on large, well-

annotated, and high-quality image data to mitigate overfitting

and achieve generalizing performance and training stability.

[5] Obtaining datasets with requirements such as the ones

outlined above remains a challenge due to logistical hurdles,

patient privacy obligations, and the associated high costs of

manual or automated medical image annotations [3,4]. To

address such data acquisition challenges, federated learning

may be an emerging solution, allowing multiple institutions to

collaboratively train a large scale model without centralizing

datasets within a server. This occurs when a global model

is initialized and sent to different clients, who can train the

global model on private institutional datasets. After client-side

training is complete, the central server can aggregate parame-

ters through a range of techniques before updating the global

model. Finally, the updated global model is sent to clients

in the next round for training, creating an iterative training

process until the global model converges. Machine learning

training via Federative learning approaches have demonstrated

performance comparable to centrally hosted machine learning

models at hospitals. [6]

In this paper, we showcase the effective use of a federated
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learning approach to train a ResNet-34 Convolutional Neural

Network on Chest X-ray scans towards accurate thoracic

disease classification. Our approach not only preserves patient

privacy but additionally achieves benchmark accuracy compa-

rable to centrally hosted models, showcasing the potential for

federated learning to improve medical image analysis on mul-

tiple private datasets while protecting patient confidentiality

and privacy.

A. ML in Medical Analysis

Recent advancements in deep learning have made a sig-

nificant impact on the field of medical imaging, providing

tools for automatic analysis of complex medical image data.

For example, an application of Convolution Neural Networks

(CNNs) trained on chest X-ray data has been shown to exceed

average radiologist performance on the F1 Metric [7]. Such

results underscore the potential of deep learning models to

enhance diagnostic precision in radiology. Similarly, within an

independent breast cancer detection study by six radiologists,

the CNN performed better than all the human readers, with

the area under the receiver operating characteristic curve (AU-

ROC) for the CNN improving over human performance by an

absolute margin of 11.5 percent[8]. Another recent study used

the Archimedes-assisted Henry Gas Optimization Algorithm +

EC classification method, and were able to receive an accuracy

of 0.95 with tuning percentage of 70, for using chest x-ray

images to diagnose pneumonia, which is higher than previous

techniques used to detect this condition[26].

Further applications of deep learning are shown in the

field of lung cancer detection, where researchers have built

a custom CNN architecture enhanced with the Channel At-

tention and Spatial Attention (SA) mechanisms. Channel At-

tention mechanisms enhance the importance of channels by

re-weighting feature maps, obtained from the convolutional

layer, by channel importance. These channels can range from

edges and texture patterns to color values and higher-level

features. Spatial Attention mechanisms enhance the spatial

importance of certain regions within spatial context through

aggregation of feature maps into spatial attention maps and

then re-weighting original feature maps in terms of spatial

importance. Both of these attention mechanisms were used

within the lung cancer detection algorithm, which improved

feature extraction capabilities and provided a more effective

detection scheme.[9]

B. Federated Learning (FL) in Medical Applications

As mentioned above, despite the numerous advancements of

deep learning within medical image analysis, privacy restric-

tions and the large amount of data necessary for generalizable

performance makes deep learning algorithms challenging to

train. Federated Learning has shown to be a promising ap-

proach to solving this problem, as the technique facilitates the

training of a global model on decentralized, private datasets,

without having to exchange much of the data itself, which

also helps during potential collaborations between multiple

organizations. The parameters obtained from training on each

of these private, institutional datasets can then be aggregated

and used to update the final parameters of the global model.

This technique can even lead to improvements over central

server models because the global model can be trained and

validated on multiple private datasets, mitigating overfitting

and improving generalized performance. For example, in a

federated learning approach to brain tumor segmentation, the

segmentation results indicated that federated learning based

models outperformed centralized and local models on numer-

ous data distributions [10]. Federated approaches particularly

excelled in small distribution scenarios and outperformed the

centrally run models significantly. [10]

Another example of Federated Learning can be seen with

an Alzheimer’s disease detection model where researchers

implemented two types of aggregation algorithms, Federated

Averaging (FedAvg) and Secure Aggregation (SegAgg). [11]

Both FedAvg and SecAgg demonstrated robust performance,

with minimal degradation in model performance. However,

losses did increase slightly in relative performance degradation

(RPD) with a greater number of clients and imbalance train-

ing distributions. Between the aggregation models, SecAgg

was much more immune to membership inference attacks,

enhancing patient security. Further, FedAvg suffered a no-

ticeable decline in performance with non-IID data, leading to

performance differences in local and global data distributions.

[11, 19] This study highlights the importance of selecting

appropriate aggregation algorithms based on data distributions

and privacy requirements. [17, 19]

II. DATASET

The National Institutes of Health (NIH) Chest X-ray dataset

is a collection of over 100,000 X-ray images and correspond-

ing thoracic disease labels made publicly available by the

National Institutes of Health. The dataset was constructed

from the collection of X-ray scans from over 30,000 patients,

many of whom had advanced lung diseases. The labels of

the fourteen common thoracic diseases in the dataset were:

atelectasis, consolidation, infiltration, pneumothorax, edema,

emphysema, fibrosis, effusion, pneumonia, pleural thickening,

cardiomegaly, nodule mass, and hernia. The fifteenth label was

“No Findings” for patients with no recorded thoracic disease

visible from X-ray.

The dataset was split into ten files, each with thousands of

scans. These files were used for attempting federated learning.

To be compatible with Kaggle, the original TAR archive files

were converted to zip files.

For the label of every X-ray scan, NIH used a weakly super-

vised multi-label image classification and disease localization

formulation. Additionally, natural language processing (NLP)

data mining techniques were used to aggregate information

from radiological reports. The labeling accuracy is estimated

to be greater than 90%.

III. PREPROCESSING

Using the PyTorch library, the same series of unique image

augmentations-resizing, normalizing, augmenting data, and
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Fig. 1. Examples of Chest X-Ray Scans

converting images to tensors-was done for each X-ray scan.

Uniformly resizing the images to a pixel dimension of 240

x 240 balanced computational efficiency with high enough

resolution for good disease classification. [12] All pixel val-

ues were normalized, therefore, with respect to precomputed

means of RGB for standardizing the intensity levels across all

images. This enables the model to learn better by reducing

variability across the dataset. [12]

In the dataset management for the federated learning frame-

work, each client’s dataset is split into three subsets: 70%

of the data for training, 15% for validation, and 15% for

testing. The split in data ensures every client has substantial

data to train their local ResNet-34 model with sufficient data

for validation and testing in the performance evaluation. [12]

For the global model, a similar split was considered for the

whole dataset by which we can evaluate how the global

model performed versus the individual local models each being

trained on smaller subsets.

Comparing the local and global models, one could observe

that the latter aggregated knowledge across all the clients to

yield more generalizable results

IV. ARCHITECTURE

After testing multiple deep learning architectures with fed-

erated settings, the final deep learning architecture selected

for the global model was the ResNet-34 deep CNN, a variant

of the Microsoft ResNet architecture with 34 layers (shown

in Figure 2a.) The ResNet is trained using residual learning,

where “shortcut” paths are created to retain features from

previous layers and combat gradient degradation. [12] Specifi-

cally to federated learning, ResNet can maintain gradient flow

across decentralized training nodes, making the model robust

for federated settings. [14]

The federated settings were achieved by applying a feder-

ated learning framework composed of Secure Aggregation and

Homomorphic Encryption. These algorithms would encrypt

all parameters obtained from local models that were to be

transferred to the central server, from which the parameter ac-

cumulation dictionary was used to aggregate global parameters

for the centrally-run ResNet. Each local device would initialize

its own instance of a ResNet and train the model locally.

The central server would then periodically update the global

model from the aggregated parameters. We iteratively repeated

training through rounds until convergence was achieved. This

process is depicted in Figure 2b.

Fig. 2. Privacy-Preserving Techniques Visualization

The other deep learning architectures that we tested for the

role of global model were VGGNets, [13] InceptionNets, [15]

and MobileNets.[16] However, these architectures had unique
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challenges that prevented their inclusion as the global model

within the federated settings.

First, VGGNets were slower in training as compared to the

ResNet global model due in part to the significant number

of parameters ( 138 million parameters) because there are

no residual connections and the large number of fully con-

nected layers at the end of the network. [13] InceptionNet

was also tested, but the inception modules and the memory

required to run parallel computations for performing multiple

computations had a prolonged runtime and memory costs for

clients. [15] Lastly, MobileNets were not used because of

depth wise separable convolutions that reduced the number

of parameters too drastically, leading to a tradeoff with lower

accuracy scores. [16]

Fig. 3. Privacy-Preserving Techniques Visualization Pt. 2

For transferring parameters from local models into global

models, a variety of approaches exist to update global param-

eters from local training. The options we favored most heavily

for the transfer of parameters were between 1.) parameter

accumulation dictionaries [20, 21] 2.) gradient-based updates

[21] and 3.) model update deltas. [27] Parameter accumulation

dictionaries are structures that hold the local parameters and

typically transformed with some form of aggregation algorithm

(e.g. Seg Agg, FedAvg) [19] to result in composite parameters

that are used to update the model. [20, 21] Gradient-based

updates aggregate gradients of local clients and apply them to

the model with gradient-descent like updates to find optimal

parameters. [21, 22] Model update deltas is the process in

which local models calculate the difference between local

parameters and the initialized parameters of the global model

sent to the clients. [27] This occurs per round, and the

differences are aggregated, which are then applied to the

global model. We chose the parameter accumulation dictionary

because it does not require extra computations to calculate

deltas and gradients such as those found in the other methods,

aiding us in avoiding burdening client computations. Further,

the parameter accumulation dictionary would allow us to use

Secure Aggregation and additive Homomorphic Encryption for

patient privacy, as detailed extensively below. [17, 18] The

choice of parameter accumulation dictionary can be changed

in the future to find optimal transfer methods for both clients

and the global model.

Lastly, we had to make the decision in choosing the Secure

Aggregation algorithm [17] over the Federated Averaging

algorithm. [24] This was because the Secure Aggregation

algorithm most aligned with the eventual goal of protecting

patient privacy within medical databases. While FedAvg has

proven to be faster and typically the predominant algorithm

applied within federated learning algorithms, we did not use

it because 1.) there remain no intrinsic privacy mechanisms

within FedAvg algorithm. [24] If a foreign entity is to enter

the centrally-run server, all local parameters used to train the

global model can be openly witnesses. [17] By comparison, the

Secure Aggregation algorithm can be outfitted with advanced

security schemes such as the Additively Homomorphic En-

cryption [18], that encrypts all individual parameters and only

provides the model with the average aggregated parameter.

With the goal of protecting healthcare privacy, the chances

of a honest-but-curious type of server (server that follows

protocol but may use private information from the data) or

external attacks is too great, and so, the Secure Aggregation

Algorithm with Homomorphic Encryption was the federated

algorithm we chose for our training process. [17, 18]

Fig. 4. Examples of ResNet-34 Architecture

Fig. 5. Federated Learning Example

V. TRAINING AND RESULTS

We used a total of five clients for model training, each

of which locally trained a ResNet-34 model by using Secure

Aggregation on divided sections of the dataset. The number

of clients was determined based on the availability of devices

that had enough memory to locally train the ResNet. We ran

federated learning for 10 rounds, dividing the dataset into

batches of size 64 for training. Each client ran for 8 epochs

with an optimized learning rate of 0.001 through the Learning

Rate Range Test that ensured effective convergence.
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Finally, initialize the global model and transfer it to the

GPU for training, then iterate through each of the rounds of

each client before updating the global model. A new parameter

accumulation dictionary was started at the beginning of each

round in order to simplify the aggregation of parameters. It

is efficient to update the global model after each client has

finished its training in every round. The best validation loss

encountered during the training process was 0.09, where the

best accuracy reached was 0.83, hence really strong perfor-

mance and generalization in the context of federated learning.

While the focus was on Secure Aggregation for privacy

preservation, we suspect that the use of Federated Averaging

could improve performance to the model. FedAvg allows

clients to make multiple updates of the local gradient descent

before aggregating those parameters into the global model,

thus enabling the combination of the best gradients out of each

local model. [24, 25] This may make the global model gen-

eralize even better, especially when the data across clients is

non-IID. Given the promising results we have gotten, FedAvg

could be an avenue worth pursuing in further experiments.

VI. CONCLUSION

This work shows how federated learning can be used to

enhance medical image classification with consideration for

some critical privacy and data security concerns in healthcare.

We investigated a new concept in the use of federated learning

for the classification of thoracic diseases using decentralized

X-ray image scans on the NIH Chest X-ray dataset. Consider-

ing that medical data are highly sensitive and often the process

for dataset acquisition is very laborious, federated learning

will provide an emerging solution for multiple institutions to

collaboratively train a shared model without compromising

patient privacy and decentralized datasets.

Comparing local and global models, one could observe

that the latter aggregated knowledge across all the clients

to yield more generalizable results. While the local models

were optimized to perform better on their respective subsets

of the overall data, the global model enriched its knowledge

regarding the whole data distribution from the collective

specialized parameters aggregate from various subsections of

the dataframe. By keeping simply the parameters as opposed to

sharing the exact same proportion of the database, the ResNet

is able to update accuracy.

We do a literature review of related works on federated

learning applications to medical imaging and decide upon

the NIH Chest X-ray dataset. The dataset consists of more

than 100,000 images across 14 different thoracic diseases

with a ”No Findings” category. First, data preprocessing was

performed to transform all image scans into the standardized

format for the ResNet-34. Next, we implemented a federated

learning framework by training and testing multiple deep

learning architectures in a decentralized setting. The exper-

iments we conducted showed that the ResNet-34 model, a

deep convolutional neural network famous for residual learn-

ing, performed better compared to other architectures such

as VGGNet, InceptionNet, and MobileNet. The federative

learning framework was outfitted with an parameter accumu-

lation dictionary and Secure Aggregation with in-built additive

homomorphic encryption. With these measures, we build an

optimal architecture to protect patient privacy by encrypting

the local parameters sent to the server, before finally using

the parameter dictionary for a smooth convergence scheme.

The peak performance of the ResNet-34 global model was at

0.83 accuracy and 0.09 validation loss. In this case, the use

of federated learning pushed very close to current benchmark

performance of 0.87 and validation loss of 0.06, showcasing

the applicability of using a federated system to protect patient

privacy while retaining accuracy, towards clinical integration.

Results have proven the feasibility of federated learning for

real-world medical data to reach generalizable performance.

The framework not only sustains high accuracy but also

protects patient privacy by decentralized training. Since data

privacy has become one of the most important barriers in

medical research, federated learning can potentially open a lot

more collaborations across healthcare institutions with no need

for extensive data sharing. Our approach showed the potential

for federated learning to provide accuracy equal to or greater

than a centralized model while eliminating many logistical

headaches and most of the privacy risks evident in traditional

machine learning.

A. Future Works

Further, in our future research work, we want to extend

this work by comparing ResNet-34 with other state-of-the-art

models for image classification. We have seen that ResNet-

34 performed well in the federated learning setting; however,

more alternatives may be considered, such as EfficientNet,

DenseNet, or even Transformer-based architectures. These

models might give a large spectrum of trade-offs regarding

training speed, memory consumption, and smooth gradient de-

scent, especially in decentralized settings where computational

resources differ across devices. This will provide a broader

insight into which architectures will work best for medical

imaging use cases in federated learning.

Another essential direction to work towards is efficient

hyperparameter tuning. In the present work, we used fixed

hyperparameters for training from manual tests such as the

learning rate range test, while in future works, wider ranges

will be explored, such as learning rate, batch size, and number

of local epochs. Other aggregation algorithms will be tried,

too, including FedAvg, FedProx, and personalized federated

learning approaches. Gaining insight into how different hy-

perparameter settings affect decentralized learning and their

ability to preserve patient privacy will be the key to fine-tuning

training on a variety of tasks and datasets.

Scalability is another critical aspect for which we have

designed our investigative approach. The federated learning

system considered in this work was limited to five clients. The

next step will be the expansion of the number of participating

clients in order to investigate whether the proposed model

scales well and can generalize over a greater variety of devices

with diverse computation power. We also plan to apply the
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proposed federated learning framework on larger and more

diverse medical imaging datasets, such as those from CT scans

or MRI scans. In that way, the generalization ability of the

proposed approach will be able to be assessed for various types

of medical data beyond chest X-rays, potentially in the context

of zero-shot or few-shot models.

Another promising direction for future work is to incor-

porate enhanced measures for privacy and security. Although

federated learning by its nature provides several advantages

in terms of privacy, we aim to incorporate techniques related

to differential privacy and secure multiparty computation to

enhance data security even further. This would ensure that even

while the data of patients is shared across decentralized net-

works, no breach in data privacy occurs, and model accuracy is

effectively retained. By incorporating multiparty computations,

extra security layers can be built into the framework which

would contribute to the same shared goal of mitigating data

breaches to protect patient privacy.

Eventually, the deployment of a federated learning system

within a clinical workflow would remain our critical objective.

We envision collaboration with hospitals and other healthcare

institutions to test our model on non-public datasets in order to

understand the practical challenges of implementing federated

learning in a decentralized health network. This would pro-

vide an opportunity to share important lessons learned from

the operational process, handling diverse data formats, and

managing infrastructure limitations. We will also look into

how advances in Cross-silo, Hierarchical Federated Learning-

one can allow better cross-site performances in large-scale

distributed healthcare networks.

These will serve to further fine-tune the models toward

clinical-grade performance for medical image analysis while

ensuring patient privacy.
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