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Abstract—This study investigates the classification of eye
movements using EEG data recorded from a wearable device,
with eye tracking data employed as ground truth for model
training. We aim to classify various eye movements, including
fixations, saccades, and directional movements, utilizing long
short-term memory (LSTM) neural networks. Data were col-
lected from 22 participants using the BrainBit headband, which
recorded EEG signals at 250 Hz with four dry electrodes, and
the Pupil Labs Invisible eye tracker, which recorded 2D gaze
coordinates at 100 Hz during computer-based tasks. The EEG
data underwent preprocessing and feature extraction to capture
essential characteristics relevant to eye movement classification.
Our LSTM model, trained and validated on this dataset, achieved
a classification accuracy of 90% for the saccade detection task
and 65% and 62% for up versus down and left versus right
movement classification accordingly. These results demonstrate
the potential of using EEG data alone for promising eye move-
ment classification, laying the groundwork for future research in
neural signal processing and its applications in human-computer
interaction and neurotechnological systems.

I. INTRODUCTION

Eye movements are a fundamental aspect of human interac-

tion with the world, reflecting a wide range of cognitive pro-

cesses, including attention, perception, and decision-making.

The ability to accurately track and classify eye movements

holds significant promise for applications in areas such as

human-computer interaction, neurological research, and assis-

tive technologies. Traditional eye tracking methods, which rely

solely on optical devices to monitor gaze direction and fixation

points, provide valuable insights but are often limited by their

reliance on external cameras and their inability to capture the

underlying neural mechanisms driving these movements.

Electroencephalography, a non-invasive method for record-

ing electrical activity in the brain, offers a powerful approach

to understanding the neural processes underlying eye move-

ments. EEG data can reveal a wider spectrum of human

physiological and cognitive states, which makes it applicable

in various fields such as emotion recognition, cognitive load

assessment, and even sleep studies. Unlike eye trackers, which

capture only the observable gaze behaviors, EEG provides

direct insight into brain activity, making it a versatile tool for

understanding the neural basis of eye movements and other

related phenomena.

Electroencephalography (EEG) and Electrooculogra-

phy (EOG) are two methods that can be used for eye-tracking.

EOG measures the corneo-retinal standing potential that exists

between the front and the back of the human eye. When

the eyes move, this potential generates a signal that can be

captured by electrodes placed around the eyes. Typically,

these electrodes are placed near the outer corners of the eyes

to measure horizontal eye movements and above and below

the eyes to measure vertical movements. This makes EOG

a direct method for tracking eye movement. EEG, on the

other hand, is used to record electrical activity generated by

the brain. However, it can also pick up potentials from eye

movements due to surface conductivity. When the eyes move,

they generate electric potentials that can be captured by EEG

electrodes placed on the scalp. Although EEG is not primarily

designed for eye-tracking, it can provide useful information

about eye movements due to these recorded potentials.

In this study, we focus on classifying different types of

eye movements using EEG data. Specifically, our goal is

to classify eye movements such as fixations, saccades, and

directional movements (left, right, up, and down) by leveraging

long short-term memory (LSTM) neural networks, which are

well suited for processing sequential data. The EEG data

was collected using the BrainBit headband, a wearable device

equipped with four dry electrodes, while the eye movements

were recorded using the Pupil Labs Invisible eye tracking

system.

The findings have important implications for the develop-

ment of advanced human-computer interfaces and neurotech-

nological applications, where understanding and interpreting

eye movements based on EEG data alone could enable more

flexible and wearable systems.

The rest of the paper is divided as follows: Section II

explores related works on the classification of eye movements

using EEG and optical tracking systems. Section III describes

the proposed methodology, including data collection and pre-

processing, model architecture, training procedures, evaluation

metrics, and encountered challenges. Section IV concludes the

study and discusses future directions for research.

II. RELATED WORK

The classification of eye movements has traditionally relied

on optical eye tracking systems, which capture gaze positions

to analyze eye movements such as fixations and saccades.

Fixations and saccades are two primary components of gaze

behavior. Fixations occur when the eyes remain relatively still

and focus on a particular object or area, typically reflecting
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cognitive processes such as attention, information encoding,

and scene analysis. On the other hand, saccades are rapid,

ballistic eye movements that shift the point of gaze from

one fixation to another, allowing the eyes to quickly scan

the visual environment. The identification and classification

of these movements provide key insights into underlying

cognitive functions and behaviors [1]. For instance, Martinez-

Marquez et al. [2] provide a comprehensive overview of eye

tracking technologies and their applications in real-life inter-

actions, showing the importance of accurate eye movement

classification in both research and practical applications.

EEG-based systems have opened new opportunities for ana-

lyzing eye movements without relying on external cameras. Jia

and Tyler [3] showed that the electrooculography methodology

allowed an accurate analysis of the amplitude and direction

of fixation locations and saccadic dynamics. Sun et al. [4]

employed 64 channel EEG to track gaze position with an

average accuracy of 1.008 degrees of the person’s visual angle.

Müller et al. [5] validated that optical and EEG eye tracking

methods are suitable for estimating the processing duration of

individual participants.

Several approaches have combined EEG and eye track-

ing data to enhance classification accuracy. Kang et al. [6]

proposed a method that integrates EEG signals with optical

eye tracking data to classify mental workload during task

execution. Their study showed that combining these two data

streams improved the overall classification accuracy compared

to using either data source alone, showing potential for hybrid

systems in neurocognitive studies.

Ma et al. [7] present a novel human–machine interface based

on both EOG and EEG and verify the effectiveness of the

proposed system by different online experiments. One is to

control a multifunctional humanoid robot, and the other is to

control four mobile robots.

Traditional EEG systems that use wet electrodes and lab

setups show success in capturing eye movements and brain

activity, but they are often restricted to controlled environ-

ments due to their size, setup complexity, and sensitivity to

external interference. These systems, although accurate, are

not practical for use in everyday settings or for long-term

monitoring, limiting their applicability in real-world scenarios.

The emergence of wearable EEG technology has addressed

these limitations by providing a more portable and user-

friendly solution.

One of the biggest challenges in using EEG from wearable

devices is the quality of the signal. Unlike traditional, wearable

devices such as the BrainBit headband rely on dry electrodes

that often suffer from poor contact quality, leading to noisy

signals. Additionally, the reduced number of electrodes in

wearable systems limits the amount of brain activity data

captured, making it more difficult to extract the fine-grained

neural information necessary for accurate classification of

complex behaviors such as eye movements. Park et al. [8]

discussed optimal electrode placement of wearable EEG de-

vices for different tasks. Wearable EEG devices are also

more susceptible to motion artifacts, where body movements

or changes in electrode position introduce significant noise,

further complicating data analysis [9].

Klug and Gramann [10] specifically addressed the chal-

lenges of Independent Component Analysis (ICA) decompo-

sition in both mobile and stationary EEG experiments. They

concluded that fewer brain Independent Components were

found in mobile experiments, but cleaning the data with ICA

has been proved to be important and functional even with

low-density channel setups. Seok et al. [11] reviewed and

introduced motion artifact reduction methods for data collected

using wearable EEG.

Despite these challenges, wearable EEG systems offer a

flexible and portable approach to studying brain activity in

everyday environments. Several studies have demonstrated the

potential of wearable EEG devices for a variety of applica-

tions, including mental state monitoring and cognitive load

assessment. For example, Pierrick et al. [12] demonstrate

the capacity of the wearable EEG to both monitor sleep-

related physiological signals and process them accurately into

sleep stages. Yu and Guo [13] combined Virtual Reality

technology and EEG measurements from wearable EEG with

flexible electrode placement. Krigolson et al. [14] showed

that portable, low-cost EEG systems can be used for event-

related potential research without event markers, effectively

identifying key components in experiments.

More recently, deep learning techniques have been applied

to EEG data for eye movement classification tasks. Gong et al.

[15] discussed the application of deep learning in EEG pro-

cessing for past ten years. Long Short-Term Memory (LSTM)

networks, in particular, have shown promise in capturing the

temporal dependencies in sequential EEG data. For example,

Zhang et al. [16] utilized LSTM networks to classify mental

states based on EEG signals, achieving improved accuracy

over traditional machine learning models.

In this work, we extend the current body of research by

focusing on the classification of eye movements using EEG

data captured by a wearable device.

III. METHODOLOGY

A. General Description

This study investigates the classification of eye movements

using a combination of wearable EEG devices and eye tracking

technology. The primary aim is to classify different types of

eye movements, including fixations, saccades, and directional

movements such as left, right, up, and down. Data was

collected from participants who participated in various tasks

designed to stimulate different patterns of eye movement. The

collected data was then processed and used in deep learning

techniques, which aimed to achieve an accurate classification

of these eye movements.

Figure 1 provides a visual overview of the methodology,

from data exploration, preprocessing, and feature extraction,

followed by the generation of sequences of varying lengths

corresponding to different types of eye movements, to train-

ing of a neural network model for classification tasks. We

presented each step in details further.
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Fig. 1. Proposed Eye Movement Classification Methodology

B. Data Collection

For this study, two primary devices were employed. The

first device was the BrainBit headband, a wearable EEG device

equipped with 4 dry electrodes that recorded raw EEG signals

at a sampling rate of 250 Hz, providing data in volts. BrainBit

is shown on the Fig. 2. The second device was the Pupil

Labs Invisible, an eye tracking system that recorded 2D gaze

coordinates at a sampling rate of 100 Hz.

The study involved 22 participants who were selected with-

out specific criteria regarding age, gender, or vision status.

Data collection was performed during computer-based ses-

sions in which participants were seated in front of a laptop,

as shown at Fig. 3. Each session lasted approximately 3 hours

and involved a variety of tasks designed to elicit a range of eye

movements. These tasks included reading passages displayed

on the screen, completing standardized Landolt C tests, and

playing simple computer games.

C. Data Preprocessing

Each data source, including both eye tracking and EEG,

contained individual timestamps for the recorded events. How-

ever, since these signals were collected using different devices,

synchronization between the datasets was required. The use of

different recording systems resulted in a temporal drift, with a

shift exceeding 300 milliseconds between the timelines. Man-

ual synchronization was performed to address this discrepancy

by identifying and aligning distinct events common to both

recordings. Specifically, high-amplitude eye movements ob-

served in the eye tracking data were detected by calculating the
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Fig. 2. The BrainBit Headband, Wearable EEG Device with 4 Dry Electrodes

Fig. 3. Data Collection Setup

distance traveled by the eye from the previous recording point.

These movements were then aligned with the corresponding

segments in the EEG recordings that exhibited large-amplitude

oscillations, ensuring precise temporal alignment between the

two data streams. An example of this synchronization process

is illustrated in Fig. 4, which highlights the matching of eye

movements with high-amplitude EEG fluctuations.

To ensure the quality of the EEG data, preprocessing steps

were implemented to remove noise. A bandpass filter was

applied, allowing frequencies below 40 Hz to pass through,

effectively filtering out higher-frequency noise. This filtering

ensured that the EEG data retained the most relevant signal

components for subsequent analysis.

It is common practice to apply a bandpass filter that includes

only frequencies above 0.5 Hz or 1 Hz, as low-frequency

components are often associated with slow, non-specific brain

activity or noise. However, in the context of this study, low-

frequency EEG signals were preserved because these frequen-

cies contain vital information related to eye movements.

By not filtering out the low-frequency signals, we ensured

that essential data specific to eye movements remained intact.

D. Feature Extraction

Several features were extracted from the eye tracking data,

including the distance between consecutive gaze points, the

speed of eye movements, and the angular direction of these

movements. These features were used to classify periods of

eye movement into different categories, such as fixation or

saccade, as well as directional movements (left, right, up,

down). Each identified sequence was labeled accordingly. Due

to the natural variability in gaze behavior, the sequences varied

Fig. 4. Synchronization Example Showing Gaze Coordinates and EEG with
Found Synchronization Point

in length. To standardize the data for model training, the

sequences were padded to match the length of the longest

sequence.

For each eye movement sequence, a corresponding EEG

sequence was selected and included in the dataset. To ensure

the quality of the EEG data, it was normalized to reduce

variability between different examples and participants. This

normalization process involved adjusting the sequences to

account for baseline shifts and applying additional statisti-

cal feature extraction techniques, including the calculation

of mean, minimum, maximum, and 90th percentile values.

These statistical features enhanced the distinctive properties

of the EEG data, aiding in the accurate classification of eye

movements.

In addition to these preprocessing steps, we utilized the

Event-Related Potential (ERP) technique to further improve
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the accuracy of feature extraction. This technique allowed us

to align specific EEG segments with corresponding eye move-

ment events detected by the eye tracking system. For every

eye movement event (e.g., fixation or saccade), we located

the corresponding EEG sequence, enabling us to capture the

brain’s electrical activity associated with each event.

Eye movement events are influenced by both muscle and

brain activities, meaning the neural processes surrounding an

eye movement event often extend beyond the exact time of

the event itself. To capture this additional neural activity, we

expanded the boundaries of the EEG segments to include

extra information both before and after each event. Through

experimentation, we found that including an additional 0.1

seconds of EEG data before and after each eye movement

event significantly improved classification accuracy. This ex-

panded window allowed us to capture not only the neural

activity directly related to the eye movement but also the

preparatory and post-event signals, which are crucial for

accurately classifying movements.

Process is shown at the Fig. 5. When saccade or fixation is

detected in the data, corresponding EEG is found, boundaries

are extended, features like distance, angle are calculated.

Fig. 5. Saccade Extraction with Corresponding EEG Sequence and Filter
Boundaries

E. Model Architecture and Training

The classification tasks were performed using a Long Short-

Term Memory (LSTM) neural network. The model architec-

ture was designed with an input size that corresponds to the

number of selected EEG channels plus additional features. The

hidden layers consisted of 128 units distributed in four layers.

After the LSTM layers, a fully connected (dense) layer was

applied, with the number of neurons in the output layer equal

to the number of target classes in the classification tasks, two

for each.

The dataset was divided into training, validation, and test

sets using an 80/10/10 split.

For training, the model used a cross-entropy loss function,

commonly used for multiclass classification tasks, which eval-

uates the difference between the predicted class probabilities

and the true class labels. The optimization process was driven

by the Adam algorithm, a widely used method that adapts

the learning rate during training to handle sparse gradients

effectively.

To further stabilize training, a learning rate scheduler was

used to decrease the learning rate by a factor of 0.9 every

three epochs. This helps in achieving a more stable learning

process.

F. Evaluation Metrics

To evaluate the performance of the model, the accuracy and

the F1 score were used as primary metrics. This precision was

calculated for each classification task: fixation versus saccades,

left versus right movements, and up versus down movements.

In addition, a confusion matrix was generated to assess the

distribution of the predictions in the different classes.

TABLE I PERFORMANCE METRICS FOR

DIFFERENT TASKS

Task Accuracy Precision Recall F1
Fixation/Saccade 90% 90% 90% 90%

Left/Right 62% 58% 63% 60%
Up/Down 68% 65% 68% 68%

The results of the model evaluation demonstrate varying de-

grees of classification performance across different tasks. The

model showed high accuracy in distinguishing between fixa-

tion and saccade movements. However, the classification task

involving left versus right movements showed a significantly

lower accuracy of 62%, indicating that the model struggled to

differentiate between these directional movements. Similarly,

the task of classifying up versus down movements achieved

moderate results, with an accuracy of 68%. Although this

performance is better than that of the left/right classification,

it still reflects some challenges in correctly identifying these

movements.

G. Challenges and Solutions

This study encountered several key challenges, particularly

in the preprocessing and synchronization of EEG and eye

tracking data. The use of dry electrodes in wearable devices,

while more convenient for users, resulted in noisier signals

compared to traditional wet electrodes. Noise introduced by

poor contact quality and motion artifacts had to be mitigated
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through filtering techniques, but some loss of data quality is

inevitable.

Moreover, the inter-participant variability in EEG signals

posed a significant obstacle. Individual differences in neural

patterns cause impossibility to use a single model for all

participants.

The task of accurately classifying directional movements,

particularly left versus right and up versus down, also proved

challenging. These movements often result in almost similar

changes in EEG signals, making it difficult for the model to

differentiate between them.

These limitations suggest the need for more advanced

approaches in future work, such as personalization strategies,

the use of transfer learning to adapt models to individual users

or deeper feature engineering.

IV. CONCLUSION

In this study, we explored the potential of classifying

various types of eye movements using EEG data collected

by a wearable EEG headband, leveraging the capabilities

of Long Short-Term Memory (LSTM) neural networks. The

results demonstrated that it is possible to distinguish between

fixations, saccades, and directional movements (left, right, up,

and down) using only EEG signals, achieving high precision

in certain tasks, such as fixation versus saccade classification.

However, the results also revealed challenges in accurately

classifying directional movements, particularly left versus right

and up versus down, highlighting the complexities involved in

decoding such movements purely from EEG data.

A key strength of our approach is the ability to handle

sequences of varying lengths, making the model adaptable

to different types of eye movements that may occur over

different time frames. This flexibility also positions the model

for potential near real-time applications, where sequences of

eye movements could be classified as they occur, enabling

the model to be integrated into dynamic, real-world systems

such as human-computer interaction interfaces or assistive

technologies.

One of the primary limitations was the high variability in

EEG patterns across individuals. Techniques such as transfer

learning, personalization strategies, or domain adaptation may

offer potential solutions to this issue in future research.

Additionally, future work could explore extending the model

beyond eye movement classification to the detection of con-

tinuous gaze coordinates, providing a more comprehensive

solution for real-time gaze tracking.

In summary, this study establishes the foundation for real-

time, EEG-based eye movement classification and sets the

stage for advancements that could enhance precise gaze track-

ing and expand neurotechnological applications.
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