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Abstract—Image enhancement is crucial in digital image pro-
cessing to improve visual quality across various applications.
Recent advancements in deep learning and computer vision
have significantly advanced automatic color correction. While
heavyweight solutions excel in quality, they demand substantial
computational resources, whereas emerging lightweight models
promise efficient operation on mobile devices. This study intro-
duces a lightweight neural network model suitable for mobile de-
vices for image color gamut correction. Our model demonstrates
performance comparable with heavyweight models. We propose
an approach that integrates unsupervised learning methods with
multimodal visual-language priors. To our knowledge, this is the
first study to use multimodal architectures as a discriminator for
automatic image color correction. Also, we proposed a method
for evaluating the quality of Image Enhancement models based
on unpaired data using binary questions answering.

I. INTRODUCTION

Image enhancement is one of the oldest tasks in computer

vision, playing a crucial role in digital image processing. The

primary goal is to increase the visual and overall quality of im-

ages to improve human perception and to enable higher-quality

image processing for various image processing tasks. The

task of preliminary image enhancement finds wide application

across different domains, such as medicine (preprocessing of

medical snapshots), history (enhancing the quality of historical

photographs), and general photography. Poor-quality images

result from variations in shooting conditions, camera and scene

parameters, and the type and position of lighting. Images may

suffer from unbalanced illuminance distribution, insufficient or

excessive contrast, long exposure times, and other parameters

that directly impact the perceived quality of images.

In recent years, the advancement of deep learning and

computer vision has led to the emergence of many intriguing

and inspiring works in the field of automatic color correction

of images. Most solutions operate in an End2End manner,

where the original image is input into a neural network and

the enhanced image is expected as output. These approaches

are heavyweight [1]–[5] and require significant computational

resources while providing high-quality image enhancement.

Recently, heavy solutions have increasingly employed atten-

tion mechanisms [4]–[7], which allow models to focus on the

most significant parts of an image that require enhancement.

This helps the network better capture the context and produce

higher-quality image reconstructions.

The second direction of research comprises lightweight

models [8]–[13], designed for use on edge devices, providing

fast prediction and reduced computational resource require-

ments. Despite the progress in lightweight models for color

correction, this area remains under-explored and represents a

promising direction for further research. One of the current

research directions in lightweight models involves using hybrid

neural network approaches, which combine the simultaneous

use of a neural network feature extractor to predict parameters

that are subsequently applied using pre-defined transforma-

tions. A notable work in this area is by Tatanov et al. [8], which

employs multiple separate generators to apply pre-determined

filters.

Most of the approaches discussed use supervised learn-

ing paradigms on paired datasets (images before and after

retouching). A significant limitation of this approach is the

need to prepare a large, representative dataset. Unsupervised

approaches are less commonly used due to the complexity of

training, but they allow for the use of smaller amounts of data

and can learn interesting patterns and distribution features.

Moreover, there is currently rapid development in the field

of natural language processing (NLP) and multimodal ap-

proaches. A key study in this area is the CLIP model [14],

which jointly trains image and text encoders to predict the

correct image-text pair. The CLIP model has been applied to

numerous other tasks at the intersection of computer vision

and natural language processing. CLIP enables multimodal

operations and uses textual prompts to obtain more context-

rich features and guidance for solving various tasks. CLIP

demonstrates an integrated understanding of visual and textual

data. Despite the achievements of the scientific community, the
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potential of visual-language models is not yet fully realized,

and relatively few studies have been conducted in this direc-

tion.

In this work, we propose a lightweight combined model

for image color correction that matches the quality of modern

state-of-the-art approaches. The aforementioned ideas inspired

our research; unlike other unsupervised approaches, we ap-

plied a combination of unsupervised learning along with the

rich visual language prior provided by the CLIP model. In our

method, CLIP is used as a discriminator to achieve a higher-

quality lightweight generator based on a modified architecture

proposed in LFIEM [8]. We utilize predefined pairs of positive

and negative textual prompts to obtain adversarial signals from

the CLIP discriminator. CLIP excels in distinguishing between

good and poor-quality images. To our knowledge, this is the

first work where CLIP is used as a discriminator for automatic

image color correction.

Contributions. Thus, our paper has the following contribu-

tions:

1) We propose a lightweight neural network model for im-

age color correction that can be used on mobile devices.

Our model demonstrates comparable performance on

the MIT Adobe FiveK [15] and FilmSet [16] datasets

in terms of PSNR and SSIM metrics. As the base

architecture, we use the LFIEM model [8] but elimi-

nate the use of multiple generator models for various

filter combinations. Our model employs all considered

differentiable filters and output parameters for them.

2) We combine unsupervised learning methods with the

use of the visual-language prior provided by the CLIP

model [14]. Using CLIP as a discriminator allows us to

achieve higher-quality results, as shown in the Ablation

Study section. We utilize predefined pairs of prompts

corresponding to image quality. To our knowledge, this

is the first work to apply CLIP as a discriminator for the

task of automatic image color correction.

3) We proposed a method for evaluating the quality of

Image Enhancement models on unpaired data using

binary questions to VQA models. This method elimi-

nates the need for paired datasets when assessing model

performance.

II. RELATED WORK

In recent years, the advancements in deep learning have

given rise to numerous intriguing and inspiring studies in

the domain of color correction for image enhancement aimed

at improving visual perception. These contemporary studies

can be broadly classified into several categories based on the

methodologies they employ.

All proposed works can be generally classified into two

main groups based on computational resource requirements:

heavyweight and lightweight approaches. Heavyweight ap-

proaches are most commonly encountered in the literature [1]–

[5] and require significant computational resources. However,

they deliver high-quality image enhancement.

These works often use complex neural network architectures

with custom blocks. An end-to-end approach is frequently

employed, where the enhanced image is the direct output of

the neural network, contributing to the approach’s resource

intensity. It is also noteworthy that mechanisms of attention are

increasingly prevalent in many recent works [4]–[7], allowing

models to focus on the most critical parts of the image that

require enhancement. Moreover, the use of attention maps

can allow the network to better capture context and produce

higher-quality image reconstruction.

Models in the second group are lightweight [8]–[13]. Most

of the models presented in this group can be ported for use

on edge devices. These models are characterized by high pre-

diction speed and lower computational resource requirements.

Approaches utilizing Look-up Tables (LUT) can be high-

lighted as a distinct area of recent research [17]–[20]. In

these works, precomputed transformation tables are applied

to enhance images. Substantial research endeavors are being

pursued in this domain, driven by the potential of LUT-

based models to notably streamline and accelerate the image

enhancement process. Several of these relatively recent mod-

els contribute to the expansion of the range of lightweight

architectures.

The domain of lightweight models for color correction

remains relatively underexplored and represents a promising

direction for further research. Many lightweight architectures

are intricately designed and employ hybrid approaches, where

the output image is generated by applying predefined differ-

entiable transformations to the input image. One notable work

in this domain is Tatanov et al. [8]. In this paper, the authors

use multiple separate generators to apply predefined filters.

Most of the discussed methodologies adhere to the paradigm

of supervised learning on datasets with paired annotations

(images before and after retouching) [1], [12], [21], [22].

An inherent limitation of this approach is the necessity for

preparing a substantial and representative dataset. Unsuper-

vised approaches, owing to the intricacies of training, are

less frequently used; nevertheless, they offer the advantage

of applying to smaller datasets.

There is a surge of interest in the field of Natural Lan-

guage Processing (NLP) and rapid development of multimodal

approaches. One of the main works in this domain is the

CLIP model [14], where image and text encoders are jointly

trained to predict correct image-text pairs. The CLIP model

has been applied to a multitude of tasks at the intersection of

Computer Vision and NLP. For instance, in the work named

StyleCLIP [23], the authors used the model to construct a loss

function, while in studies such as [24], [25], researchers use

CLIP for evaluating the quality of generative images.

These ideas served as the foundation for our research,

in which we developed a model that rivals state-of-the-art

methods in color correction quality. Our approach uses the

CLIP model as a discriminator to attain a higher-quality

lightweight generator. To the best of our knowledge, our work

represents the first instance of utilizing CLIP as a discriminator

for addressing the task of automatic color correction in images.
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III. METHODOLOGY

The overall design of our proposed approach is illustrated in

Figure 1. We use the classical generative-adversarial training

scheme [26] for our model. As the generator, we use a

custom-modified LFIEM model [8], and as the discriminator,

we use the CLIP model [14] with predefined prompts. The

multimodal embeddings of CLIP possess richer contextual

information. Using CLIP as a discriminator can enable the

generator model to produce higher-quality parameters for the

filters by leveraging the valuable signal from the discriminator.

The generator and discriminator will be discussed in more

detail in the subsequent sections.

A. Generator

The overall concept of the generator architecture corre-

sponds to the LFIEM model proposed in [8]. The generator is

also two-staged. The generator architecture is detailed in the

upper part of Figure 1.

In the first stage, a lightweight convolutional feature extrac-

tor with three convolutional layers is used, each with a stride of

2, Batch Normalization [27], and LeakyReLU activation [28].

The number of feature maps is equal to 16, 32, and 128 for

the first, second, and third convolutional layers, respectively.

This is followed by two fully connected layers with the ReLU

activation function. Depending on the applied filter, the output

either uses one of the activation functions: sigmoid for the

[0,1] range or the hyperbolic tangent function for the [-1,1]

range, or no activation function is applied at all.

The second stage involves applying classical filters with the

predicted parameters. However, we have made some modifica-

tions to this architecture: instead of using multiple parameter

generators for different filter combinations, we use a single

parameter generator, whose output is the parameters for all

filters considered in the LFIEM paper. This approach allows us

to avoid the need to iterate through various filter combinations

to obtain the highest quality model. In cases where a filter is

not needed, our model can simply output neutral or zeroed

parameters that do not alter the original image.

Let’s examine the formulas for the filters in more detail. We

will introduce some notations. Let Io be the original image,

and Iso be its resized copy. We denote the convolutional

parameter generator for the filters as h. Let Ie be the enhanced

version of the original image. Then Iso is fed into the generator

h, the output of which is a parameter vector pi, i = [1, n] for

the predefined n differentiable filters, which model changes

in the digital image by adjusting white balance, exposure,

and other color transformations. Each filter outputs a modified

version of the original image Io. Subsequently, a summator is

applied, where the outputs of the filters are summed together

with clipping at the maximum value of 1 to obtain the

enhanced version of the original image Ie. The aforementioned

manipulations can be represented by the following general

formula:

p1..n = h(Iso); Ie = min(max(Io +

n∑
i=1

fi(Io, pi), 0), 1),

where the clipping of the result to the range [0, 1] is shown

using the min and max functions, as we are working in

the RGB space. Thus, the generator is called once to obtain

the parameters for all filters simultaneously. Moreover, the

approach remains lightweight, as only the value of the output

parameter in the final layer is changed.

It is also important to consider the different transformations

(filters) used in the generator model. All these transformations

were mentioned in the LFIEM paper [8], and we have also

used them in the present study.

Let us introduce some notations again. Let Iin and Iout be

the input and output images, respectively. c denotes the color

channel (red, green, blue), and (x, y) are the pixel coordinates

on the image. p, q, r, s, t, u are trainable parameters. We as-

sume that we are working in the RGB space, therefore the

channel values will be normalized to the [0, 1] range.

In the current work, automatic color saturation correction

was applied to the image. This filter is applied to the image

on a per-pixel basis and is defined by the following formula:

Δ[x, y] =

{
(m− Iin[x, y]) · (1− 1

1−p
), if p > 0

−(m− Iin[x, y]) · p, otherwise;

Iout[x, y] = Iin[x, y] + Δ[x, y],

where p ∈ [−1, 1] is the trainable parameter and m is the

per-channel mean value of the pixels in the original image.

Additionally, automatic image contrast correction was con-

sidered, where r ∈ [−1, 1] is the trainable parameter. The im-

age contrast correction filter can be described by the following

formula:

Iout[x, y] =

{
(Iin[x, y]− 0.5) · 1

1−r
, if r > 0

(Iin[x, y]− 0.5) · (1− r), otherwise.

The transformation for automatic white balance correction

is presented in the formula below. The trainable parameter

sc ∈ [0, 1] is multiplied by each pixel in the channel c of the

input image (the white balance correction filter requires three

trainable parameters for the original image in the RGB color

space).

Icout[x, y] = Iin[x, y] · sc.
The image transformation performing automatic exposure

correction is written as follows:

Iout[x, y] = Iin[x, y] · 2t,
where t is the trainable parameter with real value.

The trainable linear image transformation [29] is an ad-

ditional important mapping. It can be described with the

following formula:

Iout[x, y] = P · Iin[x, y] + b,

where P ∈ R3×3 stands for the trainable affine mapping

matrix, b ∈ R3×3 is the trainable vector in RGB space.

The channel-wise image color transformation that was

described in [30] was also used. The transformation is a triplet
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Fig. 1. An overview of the proposed method. Our model is trained in an unsupervised manner. The generator is a hybrid model that predicts parameters for
differentiable classical filters. The discriminator is the multimodal CLIP model, utilizing predefined prompts such as ”Good/Bad Photo”.

of functions that are applied to the red, green, and blue color

channels respectively. Each function is a linear combination

of the elements f1, f2, ...fn of a n-dimensional basis, the

coefficients for which are calculated from the output of our

parameter generator. Therefore, a channel value for each pixel

of the input image is evaluated by the formula:

Icout[x, y] = Icin[x, y] +

n∑
i=1

uic · fi(Icin[x, y]),

where f1, f2, ...fn – functional basis mentioned above, and uc

– trainable parameters (one parameter for each channel).

Because of its proven effectiveness [30], we considered only

the piece-wise basis and used the following set of functions:

fi(x) = max(0, 1− |(n− 1) · x− i+ 1|), i ∈ {1, 2, ...n},
where x is the value of the current pixel of the input image.

B. CLIP Discriminator

The discriminator distinguishes between real and generated

images. Aesthetic or enhanced images serve as the real sam-

ples, while the output of our model serves as the generated

samples. In our work, we use the CLIP model with prede-

fined prompts as the discriminator. The generative adversarial

approach [26] is typically used to solve the image-to-image

translation problem, where the input image is translated from

a source domain X to a target domain Y . In our setup, the

source domain X consists of the original images, while Y
contains images that are of higher quality in terms of aesthetics

and visual perception.

The paper [25] demonstrated that using a pair of antonyms

as prompts for CLIP-like models is more effective, as it helps

to avoid the issue of language ambiguity, specifically the

ambiguous interpretation of prompts. For instance, ”a rich

image” could mean both a highly detailed image and an image

depicting wealth. We selected ”Good photo” and ”Bad photo”

as the baseline prompts.

C. Loss Function

We train our lightweight generator in an unsupervised man-

ner. For training, we utilized the standard adversarial loss [26].

The adversarial loss Ladv describes the competition between

the generator and the discriminator:

Ladv = logD(x) + log(1−D(G(Io))),

where D is the discriminator, G is the generator, x represents

real data (aesthetic or enhanced images), and Io represents the

input image. D(·) represents the probability that the image is

”real.” During adversarial training, the discriminator aims to

maximize Ladv , while the generator tries to minimize it.

Additionally, we aim for the parameter generator to be

invariant to weak augmentations and to produce the same

values for similar images. To achieve this effect, we utilized

the loss function with Consistency Regularization, as proposed

in [8], and represented by the following formula:

Lcr =

n∑
i=1

‖hi(Iso)− hi(T (Iso))‖2,

where Iso is the resized copy of the original image, h is the

parameter generator, and T (·) denotes a weak augmentation

of the image, and ‖ · ‖ denotes the L2 norm of the vector.

We used RandomCrop as the weak augmentation. Therefore,
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consistency regularization aims to minimize the gap between

the parameters of the original image and its random crop.

Finally, our model is trained on a combination of loss

functions:

L = ω1Lcr + ω2Ladv,

where ω1, ω2 are the weight coefficients.

IV. EXPERIMENTAL SETUP

A. Dataset

In this section, we discuss three different datasets that

we used for both training and evaluation: the MIT Adobe

FiveK [15] dataset for training and its subset RAN-

DOM250 [2], [8], [31] for validation; the FilmSet [16] dataset

for training and validation; and we also used the LSDIR [32]

dataset of aesthetic images, we describe it in more detail

below.

The MIT Adobe FiveK [15] dataset is a well-established

benchmark in the field of Image Enhancement and contains

5000 pairs of images before and after processing by five

different experts. We follow previous methods [2], [8], [10],

[33], [34] and use the annotations by the expert with the

code name C as the baseline. We use the RANDOM250

subset [2], [8], [31] of the MIT Adobe FiveK dataset for model

evaluation, while the remaining 4750 pairs of images are used

for training.

The second dataset we used for training and validation is

FilmSet [16]. This extensive dataset contains 5285 images

for each of three different film genres: Cinema, Classical

Negative (Class-Neg), and Velvia. We address the task of

Film Enhancement using our generator with this dataset. For

training, we used 4657 images and 638 images for testing, as

suggested in the original paper.

We also attempted to train the lightweight generator using

aesthetic images as the target. Our main idea is to teach

our generator the properties of ”aesthetic quality”. For this

purpose, we selected the LSDIR dataset [32], which contains

more than 80,000 curated images from Flickr. We chose

72,000 images for training and 8,000 images for testing. As the

source images, we use a shuffled set of 4,300 training images

from MIT Adobe FiveK and 4,207 images from FilmSet [16].

Additionally, we set aside 450 images from each dataset for

validation and testing. Hereafter, we will refer to this dataset

as the ”comboset”.

It is worth noting that although most of the aforementioned

datasets have annotations in the form of ”image – its enhanced

version”, we use these sets only for training in an unsupervised

unpaired mode. We prepare the datasets for training as follows:

first, we resize the images to a resolution of 800 on the shortest

side while maintaining the original aspect ratio using bicubic

interpolation [35]. It should be noted that such interpolation

up to certain sizes is the most commonly used among methods

similar to ours. Next, we get a random crop of size 512×512
from the images. Another crop of the same size is taken from

the same image for consistency regularization. During testing,

we do not use random crops, we pad the images to a size

of 512 × 512. We use the RGB color space for training and

validating the models, thus, we normalize the images to the

[0, 1] range.

B. Evaluation Metrics

1. Paired Data Evaluation

To evaluate the performance of our model on paired

datasets, we used two metrics: the peak-signal-to-noise ra-

tio (PSNR) and the structural similarity index measure

(SSIM) [36]. Higher values of PSNR and SSIM indicate

improved model performance. While SSIM is a more suitable

metric for comparing local artifacts, PSNR represents the

standard mean squared error in pixel-by-pixel comparison of

two images [37].

2. Unpaired Data Evaluation

Paired data are not always available, and existing dataset

annotations for Image Enhancement are often subjective, influ-

enced by varying perceptions of aesthetics among different ex-

perts. To ensure a comprehensive evaluation of our approach,

we employed a custom assessment method on unpaired data

using Visual Question Answering (VQA) models. We used

multiple models to assess the quality of enhanced images

through a series of binary questions. This approach enables

a quantitative assessment of the subjective aspects of image

quality. We employed an experimentally derived set of 10

questions, presented in Table I.

TABLE I QUESTIONS FOR UNPAIRED MODEL

EVALUATION

Questions

Does the image have good contrast?
Are the dark and light areas of the image well-defined?
Is the white balance of the image correct?
Do the colors in the image look natural?
Is the image properly exposed?
Is the color palette of the image pleasing to the eye?
Are the colors in the image well-balanced?
Are the colors in the image vibrant and lively?
Do the colors in the image complement each other?
Are the colors in the image harmonious?

We appended our questions with the phrase ”Answer Yes or

No.” at the end to establish a response pattern. This way, we

obtain 10 binary answers (”Yes” or ”No”), which we then

transform into 1s and 0s, respectively. The target for our

evaluation is a vector of all ones, representing the highest

quality image. The higher the metric value, the better the

quality of the image produced by the model. The resulting

values are then averaged to provide a single score in the range

[0, 1], reflecting the overall quality of the enhanced image:

Q =
1

n

n∑
i=1

qi,

where n is the number of questions, and qi is the i-th question.

For a more robust evaluation, we use multiple VQA models.

Their answers are also averaged using the following formula:

IQAV QA =
1

m

m∑
j=1

λjQj ,
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where m is the number of VQA models, Qj is the evaluation

of the j-th model, and λj is the weight coefficient (default

λj = 1).

C. Implementation Details

All our experiments were conducted on a system with

1 x NVIDIA GeForce RTX 3060 and an Intel Core i5-

10400 CPU with 2.90GHz. We developed the model using

the Torch framework [38]. Our models were trained using the

Adam optimizer [39] with the following parameters: β1 = 0,

β2 = 0.9, and a batch size of 40. The learning rate for

our lightweight generator was initialized at 1e− 3, while the

learning rate for the CLIP discriminator was set at 1e − 4.

Both learning rates were adjusted with a decay factor of 0.95

every 1,200 iterations. All experiments were terminated after

10K iterations, and the best checkpoint was selected based on

quality metrics.

We employed several techniques to stabilize GAN train-

ing [40]. We used Label Smoothing with labels of 0.2 for fake

samples and 0.8 for real samples instead of 0 and 1, respec-

tively. Additionally, since we used a pre-trained CLIP model

(based on ViT-B/32), we decided to update the discriminator

weights less frequently. We performed an optimizer step for

the discriminator once every 10 steps.

V. RESULTS

In Table II, we present the comparison results of our

best configurations with existing state-of-the-art approaches.

In this section, we reviewed for the MIT Adobe FiveK

dataset [15] nine heavyweight methods (CE+PRNL [29],

Pix2Pix [1], Distort-and-Recover [2], DPED [3], 8RES-

BLK [41], CRN [42], HDRNet [33], MAXIM [4], MIRNET-

v2 [5]) and eight lightweight methods (U-Net [9], Deep-

UPE [10], DeepLPF [11], DPE [12], SULPCE [13], 3D-

LUT [19], SepLUT [17], LFIEM [8]).

In Table III, we present the quantitative comparison results

of the models on the FilmSet dataset [16] for three different

film styles: Cinema, ClassNeg, and Velvia. We considered

ten different models: HDRNet [33], DPE [12], UPE [10],

DeepLPF [11], 3D-LUT [19], STAR-DCE [43], LPTN [44],

SepLUT [17], FilmNet [16], and CLIP-LUT [20].

All the values in Table II and Table III are adopted from the

respective papers. It is worth noting that while our proposed

solution is not the best in terms of PSNR and SSIM metrics, it

demonstrates a decent performance that is comparable to state-

of-the-art approaches. Additionally, a significant advantage of

our solution is its lightweight nature.

We also evaluated the performance of our model in compar-

ison with other unsupervised approaches using our proposed

metric based on VQA models. The comparison results are

presented in Table IV. We used four VQA models trained on

the VQAv2 dataset [45]: BLIP [46], BLIP2 [47], ALBEF [48],

and PNP [49].

We also present a visual comparison of the models’ output

in Fig. 2. Additional visual results are presented in Fig. 3.

As one can see, our proposed solution based on the com-

bined dataset with aesthetic images performs better when

tested on the MIT Adobe FiveK dataset. This is because

the FilmSet dataset is not a classical dataset for the Image

Enhancement task; it is intended for the Style Transfer task

and includes three different target styles. To effectively learn

these styles, it is necessary to use only target images from this

dataset without shifting the distribution towards images with

different styles.

TABLE II COMPARISONS OF DIFFERENT METHODS WITH OUR BEST MODEL

ON MIT ADOBE FIVEK DATASET (RGB COLOR SPACE) –
THE FIRST RESULT IS BOLD AND THE SECOND IS UNDERLINED

Method # params PSNR↑ SSIM↑ Train-Test Split

Heavyweight

CE+PRNL >30M 24.19 0.915 4750-250
Pix2Pix 54M - 0.857 4750-250
Distort&Recover 153M - 0.905 4750-250
DPED - 21.76 0.871 2250-500
8RESBLK - 23.42 0.875 2250-500
CRN - 22.38 0.877 2250-500
HDRNet - 21.96 0.866 4500-500
MAXIM 14.1M 26.15 0.945 4500-500
MIRNET-v2 5.9M 23.97 0.931 4500-500

Lightweight

U-Net 1.3M 22.24 0.850 4500-500
UPE 1.0M 23.04 0.893 4500-500
DeepLPF 800K 24.48 0.887 4500-500
DPE 2.2M 23.89 0.906 4750-250
SULPCE >1M 23.93 0.920 4000-1000
3D-LUT <600K 24.59 0.846 4500-500
SepLUT - 25.02 0.873 4500-498
LFIEM 101K 24.77 0.911 4750-250

Ours, FiveK 47k 25.92 0.939 4750-250
Ours, comboset 47k 25.98 0.925 4750-250

TABLE III COMPARISONS OF DIFFERENT METHODS ON THE FILMSET

DATASET – THE FIRST RESULT IS BOLD AND THE SECOND IS UNDERLINED

Method Cinema ClassNeg Velvia

Metric PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
HDRNet 35.18 0.990 35.41 0.988 34.37 0.975
DPE 3.980 0.358 3.790 0.320 3.480 0.313
UPE 22.81 0.946 22.50 0.936 22.23 0.893
DeepLPF 36.34 0.985 33.40 0.978 34.06 0.956
3D-LUT 35.49 0.990 33.82 0.989 34.07 0.976
STAR-DCE 28.12 0.949 25.54 0.945 34.06 0.956
LPTN 36.55 0.985 34.22 0.972 33.19 0.948
SepLUT 35.82 0.986 34.10 0.982 32.88 0.964
FilmNet 40.07 0.993 38.89 0.992 37.60 0.981
CLIP-LUT 39.85 0.994 39.05 0.994 37.68 0.982

Ours, FilmSet 38.11 0.993 38.08 0.991 37.69 0.981
Ours, comboset 36.51 0.980 34.76 0.971 34.19 0.943

TABLE IV COMPARATIVE STUDY OF

UNPAIRED MODELS

Method IQAV QA

DPE 0.89
Pix2Pix 0.78
EnhanceGAN 0.81

Ours, comboset 0.94
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Fig. 2. Visual comparison of output for Exposure, LFIEM [23], MAXIM [24], and Our model (comboset) by columns
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Fig. 3. Source images and outputs of Our model (comboset) on RANDOM250

A. Ablation Study

In this section, we briefly review several ablation experi-

ments.

Our use of Consistency Regularization is motivated by the

fact that training only with adversarial loss leads to unstable

training and suboptimal results. In our case, Consistency

Regularization serves the role of a reconstruction loss.

Additionally, we used different prompt pairs for training

the discriminator. In Table V, we present a comparative study

of various prompt pairs on the RANDOM250 subset of the

MIT Adobe FiveK dataset (4750-250 split). The aim of this

ablation experiment is to determine which prompt pairs are

most effective in guiding the discriminator. We evaluate the

effectiveness of different prompt pairs and show that it is most

effective to use a random pair of prompts from the presented

list as input to the CLIP discriminator at each optimizer step.

In another ablation experiment, we aimed to demonstrate

that training with the CLIP discriminator is effective and
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TABLE V COMPARATIVE STUDY OF PAIRED PROMPTS ON

RANDOM250 (MIT ADOBE FIVEK)

Prompt pair PSNR↑ SSIM↑
good/bad photo 25.63 0.924
high/low contrast photo 25.54 0.920
bright/dark photo 24.87 0.918
high/low quality photo 24.92 0.920
clean/noisy photo 25.11 0.919
sharp/blurry photo 25.42 0.926
high/low saturated photo 25.51 0.929
correctly exposed/overexposed photo 25.34 0.923
correctly exposed/underexposed photo 25.28 0.921
highly/loss detailed photo 25.25 0.915

random prompt pair 25.92 0.939

comparable to classical paired training in terms of quality

metrics. The comparison results are presented in Table VI.

For this comparison, we used the MIT Adobe FiveK dataset

and the same loss function configuration as presented in the

LFIEM paper [8]. For the loss function in paired training, we

chose a linear combination of L1 and LSSIM , where L1 is the

L1 norm between the generated image and the ground truth

image (annotated by expert C), and LSSIM aims to improve

the structural similarity index measure between the enhanced

image and the target image. The results demonstrate that using

the CLIP discriminator in an unpaired training setup is more

effective than classical paired training.

TABLE VI COMPARISON OF TRAINING WITH THE CLIP
DISCRIMINATOR AGAINST CLASSICAL PAIRED TRAINING

Method PSNR↑ SSIM↑
Unpaired Training with CLIP Discriminator 25.92 0.939
Classical Paired Training 24.51 0.924

VI. LIMITATIONS

Although our solution demonstrated good results and we

showed that using CLIP with predefined prompts as a discrim-

inator in a GAN scheme is effective, the ideas presented in this

paper can be further developed. For instance, instead of using

specific textual prompts, one could use learnable prompts.

VII. CONCLUSION

In this study, we presented a lightweight neural network

model for image color correction optimized for mobile devices

(47 thousand trainable parameters). We conducted a compre-

hensive comparison of our approach against competing state-

of-the-art solutions, and our model demonstrated comparable

performance on the MIT Adobe FiveK and FilmSet datasets,

evaluated using PSNR and SSIM metrics. We integrated

an unsupervised approach with the multimodal CLIP model

serving as a discriminator.

Our contributions include simplifying the neural network

architecture based on the LFIEM model. Specifically, instead

of multiple parameter generators, we now employ a single

generator that outputs parameters for various differentiable

filters. Moreover, using CLIP as a discriminator enabled

significant improvements in image correction quality. The

application of predefined textual prompts to CLIP effectively

distinguishes desirable and undesirable image characteristics,

thereby enhancing the overall quality of our lightweight image

correction model. We conducted a brief ablation study to

validate our ideas.

To conduct a more comprehensive evaluation of model

performance, we proposed a method for assessing the quality

of Image Enhancement models based on unpaired data using

binary questions to VQA models. Our model demonstrates

superior results according to the metric we introduced.

Considering the advancements in computational resources

and the widespread adoption of mobile devices, developing

efficient solutions for image enhancement will play a pivotal

role in advancing digital image processing technologies. We

hope that our research contributes to the development of image

processing in computer vision. The future work could focus on

reducing encoder weights by using convolution decomposition

and improving quality in unsupervised learning.
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