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Abstract—The quantity of multiply–accumulate operations in 
a model (MACs) is a widely used metric in the field of neural 
networks and deep learning. This metric expresses the 
computational cost of a considered model. However, in Binary 
Neural Networks BNNs, we merely have floating point operations 
at inference time, we have mostly XNOR binary operations, 
hence we can’t use the metric MACs to describe the computation 
cost of BNNs. In this paper, we propose XNOROPs; a new metric 
that expresses the computation cost of BNNs on Central 
Processing Units CPUs and Microcontrollers unit MCUs. A 
compression technique for BNNs is introduced to maximize the 
usage of CPU and MCU resources, and so reduce the inference 
time. The new metric is well explained and built-up step by step 
taking into consideration the inner operations cost in terms of 
CPU and MCU cycles. XNOROP is related to the well-known 
MAC metric by a mathematical equation, enabling us to measure 
the number of operations in a binarized model when number of 
operations in its float counterpart is provided. Finally, a recipe 
that helps is choosing the appropriate hardware for BNNs 
deployment using the new XNOROP metric is provided. 

I. INTRODUCTION 

When evaluating the computational complexity of AI 
models, particularly machine learning and deep learning 
models, several key metrics can be used to assess and compare 
their efficiency. These metrics focus on different aspects of the 
model's resource usage, such as time, space, and the number of 
operations involved. In the AI community there are three well-
known metrics to calculate the number of operations involved 
in a model, or as a measurement of hardware performance. 
Those metrics are called FLOPS, FLOPs and MACs.  

FLOPS [1], [2], [3] (with all uppercase is the abbreviation) 
stands for floating point operations per second, is a metric 
invented by [1] in 1979 which refers to the computation speed 
and is generally used as a measurement of hardware 
performance (computation capability); like what NVIDIA 
provides in the characteristics of its’ GPUs. FLOPs (lowercase 
“s” stands for plural) on the other hand, refers to the quantity of 
floating-point operations in a model. It is commonly used to 
calculate the computation complexity of an algorithm or model. 
Also, it is a widely used metric that AI researchers use when 
they make improvement in some tasks that goes beyond the 
state of the art in some field [4], [5], [6]. MAC [3], [7] stands 
for multiply–accumulate operation. MAC represents two 
operations, multiplication of two numbers and adding that 

product to an accumulator.  For example, when working with 
different models’ architectures such as DenseNet [8] or 
MobileNet [9] or for edge devices, people use MACs or FLOPs 
to estimate the model performance. 

The reason we use the word “estimate” is that both metrics 
are approximations instead of the actual capture of the runtime 
performance. However, they still can provide very useful 
insights on energy consumption or computational requirements, 
which is quite useful in edge computing. The AI community 
uses both terms in their research and scientific papers, with the 
known assumption that one MAC equals roughly two FLOPs. 

In BNNs we do not need to perform multiplication [10], 
which is a computationally expensive operation especially for 
microcontrollers that don’t have Floating Point Unit FPU [11], 
[12]. Bitwise operations are sufficient for this task. 
Specifically, we need XNOR and bits count. Knowing those 
facts about BNNs, we understand that MACs and FLOPs are 
not suitable metrics to calculate computational cost of BNNs. 

BNNs are a relatively recent development in the field of 
neural networks and machine learning. It emerged in 2015 and 
is used in a model called BinaryConnect [13]. The concept of 
binary neural networks, which involves using binary weights 
and activations to significantly reduce computational 
complexity and memory usage, gained significant attention 
since then.  

Till now, there is no known metric that measures the 
computation cost of BNNs during inference time. Also, there is 
no metric that expresses the quantity of operations and type of 
those operations in BNNs. In other words, if we have a BNN 
model ready to be deployed on some embedded device, we 
can’t use any known metric that measures inference time or 
execution cost of the model on the target device. The only 
metric that exists by now is Binary Operations Per Second 
(BOPS) [14], which basically researchers apply to modern 
datacenter computing workloads, which often involve a 
significant proportion of non-floating-point operations. 
However, for BNNs, no metric can express the computation 
cost without taking the bus size [15] (core registers size) of the 
target device into consideration.  

From now on, in the main text (except section titles) we 
will refer to Float Convolution as FC and Binary Convolution 
as BC. The contributions of this paper are: 
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 We propose a new approach to compress BNNs and do 
BC effectively. 

 XNOROP: a new metric that expresses the computation 
cost of BNNs on target CPUs or MCUs, with 
mathematical relations to calculate it. 

 Mathematical approximations of the relationship 
between our metric XNOROPs and the well-known 
MACs metric.  

 Recommendations for the design of BNNs and its filters 
sizes to achieve optimal usage of system resources. 

The paper is organized as follows. Part 2 clarifies the 
concept of BNN compression and BC.  Part 3 discusses and 
shows the cost of MAC and XNOROP in terms of CPU cycles 
and memory access times. In part 4 we show the deployment 
process of BinaryNet model as a test of our theory on the new 
metric. Part 5 provides a recipe that helps in choosing the 
appropriate hardware for a chosen BNN model performance 
using XNOROP metric. 

II. BNN COMPRESSION AND BINARY CONVOLUTION 

A. Binary convolution 

Let’s study a simple example of a convolution operation 
between two filters of size 3 3 . Let’s take: 

1 2

1 1 1 1 1 1

1 1 1 , 1 1 1

1 1 1 1 1 1

f f

      
          
       

 

Then the convolution result is: 

1 2 1.( 1) ( 1).1 ( 1).( 1) ( 1).1 1.( 1) 1.( 1) ...

               1.( 1) ( 1).1 1.1 5

f f              
     

  

In BNNs, weights that have the value -1 are represented as 
0 and weights that have the value 1 are represented as 1. This 
is because it is physically what we can store in one bit of 
memory, bit could only be set or reset. We therefore need to 
find a cost-effective method to do BC. 

If we replace each -1 by 0, we will obtain convolution result 
as:  

1 2 1.0 0.1 0.0 0.1 1.0 1.0 1.0 0.1 1.1 1f f            

Which is not correct. The correct answer is 5  not 1 . A 
closer observation on the previous convolution operation 
shows us that we obtain 1  when we multiply one by one 
( 1 1   ) or minus one by minus one ( 1 1   ), where minus 
one is represented as 0 , so 1 1 0 0    . This logical 
behavior is the XNOR operation, truth table and gate for 
which are shown in Fig. 1. In other words, we can do BС by 
doing an XNOR between the two filters, and then counting the 
number of set bits in the binary representation of XNOR 
operation result. 

What is left for us now is set-bits counting, taking into 
consideration that 0 is actually a -1 and XNOR is equal to 
NOT XOR. For our example we have: 

~ (100011101^ 010100011) ~ (110111110) 001000001   

Where ~ is the logical bitwise NOT operation. Now we 
count the number of ones and zeros to find the result of 
convolution as: 
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Where ib  is the value of bit i . Let’s rewrite the convolution 

operation:  

 

 

1

1 2
0

1

0
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          2 1: 1, ~ (110111110) 9 4 9 5
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Where 9 is filter size, which in our case is 3 3 9  , ^  is the 
XOR operation. Therefore, the math behind a BC is: 

 
1

1 2 1 2
0

2 1: 1, ,       (1)
f f

i i
i

c f f b b XNOR f f f f
 



 
        

 


 

 
Fig. 1. XNOR gate mathematical representation and truth table 

B. How to count set bits in binary representation 
effectively? 

The intuitive method to do set-bits counting is by checking 
the Least Significant Bit (LSB) whether it is 1 or 0, after that 
we shift the number to the right by 1, and again check the LSB 
whether it is 1 or 0. This is repeated n times, where n is filter 
size, as shown in Algorithm 1. 

Algorithm 1 set-bits counting by shifting 

1f : first filter. 

2f : second filter. 

xnor : XNOR ( 1 2,f f ) 

s : filter size 
0res  : convolution result 

For i  from 0  to 1s  do 
    If ib is equal to 1 then 

        1res res   
    end 
    xnor  shift xnor to the right by 1 
end 

2res res s    
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For most modern processors across different architectures, 
basic shift operations generally get performed in a single clock 
cycle. However, the exact number of cycles can depend on 
factors such as the specific instruction the core can handle, the 
number of bits being shifted, and the processor's 
microarchitecture. Since ARM CPUs and MCUs are the most 
used hardware for embedded systems we will consider it and 
build our analysis targeting its devices. Performing one XNOR 
operation takes two CPU cycles, one cycle to do XOR [16] 
(here we neglect the cycles required to access data from 
memory and discuss it at a later stage), and the other cycle to 
do the logic NOT [16] operation. Shift operation takes also 
one CPU cycle [16], which seems quite fast. However, if BNN 
has millions of convolution operations, and if data type is 
unsigned integer 32bits, then for each convolution we have 31 
shifting operations, 32 comparisons, 32 add operations and 
some CPU cycles to access data from memory. This leads us 
to a situation in which Micro-Controller Units (MCUs) that 
tick with few hundreds of MHz will merely do one million 
BCs in one second, and this is very computationally expensive 
and unsuitable for real time applications. 

We introduce a more efficient way to do set-bits counting 
using lookup tables. The idea is to create a matrix, or a lookup 
table, in which we store the number of set bits for numbers 
from 0 to 3, 15, 255, 65535 or 4294967296, depending on how 
large the free memory is, what it allows us to store in it and 
core registers sizes. Table I shows an example of lookup table 
of size 64 Kbytes. The numbers 3, 15, 255, 65535 and 
4294967296 are equal to 2 4 8 162 1,  2 1,  2 1,  2 1,     322 1  
respectively. The reason we chose those numbers is because 
they correspond to the used overtime bus sizes in core 
architectures of CPUs and MCUs [17], [18], [19], [20]. The 
Bus size of 64 or 128 bits is not considered, because storing a 
lookup table of size 64 2  or 128 2  in not feasible; requires a 
huge amount of memory that can’t be created.  

Table I occupies 65536 / 1024  64  Kbytes to store in 
memory. So now when we want to find the number of ones in 
an unsigned integer 32bits, we simply take the first half of the 
number (one clock cycle) and lookup for number of ones in 
the matrix (one access for memory), then take the second half 
of the number (another clock cycle) and lookup for number of 
ones in the matrix. And finally, sum up the two numbers 
together. The operations are one shift, one sum operation and 
two memory access. So, we moved from more than 64 logical 
operations in the first solution to 1 operation in the second 
solution, from 32 sum operation to 1 sum operation and from 
64 times of memory access to only two memory accesses. 
which is quite good optimization. 

The idea of doing BC using lookup tables is probably the 
fastest approach to be used. We did simple modeling that 
shows how fast we can do set-bits counting using lookup 
tables approach for tables of sizes 4, 16, 255, 64K Bytes and 
the slow shifting approach. In this experiment we simulate set-
bits counting for numbers from 0 up to 1 million. Modeling 
results are shown in Fig. 2. It is to be noticed that using lookup 
table of size 64 Kbytes is 1635 Sec/ 61 Sec 25.80m m    faster 
than counting by shifting. Where 1635 Secm  is the time 
consumed by STM32F429ZI microcontroller to do set-bits 

counting by shifting, while 61mSec is consumed using lookup 
table of size 64 Kbytes. Also, we notice that we gain a linear 
decrease in time for doing the same operations as we increase 
the size of the table, which as we mentioned before, 
corresponds to architecture bus and registers sizes [17], [18], 
[19], [20]. Algorithm 2 demonstrates pseudocode for doing 
XNOR using lookup table of size 64  Kbytes. The same 
algorithm is used in case we have lookup table smaller in size. 
The only difference is the number of shift and add operations, 
and number of lookup table accesses for one XNOR. 

Algorithm 2 set-bits counting using lookup table of size 
64 Kbytes and bus size is 32bit 

1f : first filter. 

2f : second filter. 

xnor : XNOR ( 1 2,f f ) 

0res  : convolution result 
[ & 0 ]res LOOKUP xnor xFFFF      // &    is a cast instruction  

[ 16]res res LOOKUP xnor    

 

Fig. 2. Set bits counting. Count by shifting is represented in Algorithm 1. 
Count via lookup table of size 64 Kbytes is represented in Algorithm 2. The 
latter is 1635 Sec/ 61 Sec 25.80m m   faster than the count by shifting. 

C. Binary filters compressing for fast binary convolution 

BC does not just replace MACs operation by XNOR and 
shift operations, but their quantity will be about 4, 8, 16, 32, 
64 or 128 (bus size) times less than the quantity of MACs to 
calculate the output of a convolution layer of some size. To 
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demonstrate this idea let’s take a convolution layer and 
proceed in performing BC operation using lookup tables. We 
study a simple case of two consecutive convolutions blocks as 
shown in Fig. 3. 

 

 
Fig. 3. Two Consecutive conv-layers    64 128 3 3 ,128 128 3 3       

Since filter size is 3 3 128   and it is a binary filter; each 
element of this filter has one of two values 0 or 1, then we can 
compress this filter (assuming that bus size of target 
architecture is 32) to be of dimensions 3 3 4  where each 
element of the compressed filter is 32-bit unsigned integer that 
represents a chunk of the source filter, size of which is 
1 1 32  . This compression leads to replacement of  
3 3 128 5 5 28800      MACs with only 03 3 4 5 95 0      
XNOR operations, 900 2  add operation and 900  shift 
operations, which is a huge improvement in performance. It is 
to be noticed that when the hardware doesn’t have FPU unit, 
then using BC boosts the performance to a level of 
optimization that is several hundred times faster than FC. 

We call the combination of shift, add, and XNOR 
operations required to perform a BC between two parameters 
as XNOROP. So, we state that XNOROP expresses the simple 
logic operations required to perform BC between two integer 
elements. We decided to join the three types of operations in 
one term, because we would like our new metric to be 
comparable to MAC, which expresses float addition and 
multiplication operations [21]. 

III. COST OF MAC AND XNOROP 

To compare MAC and XNOROP operations in terms of 
clock cycles, we need to consider how each operation is 
implemented and executed on CPUs and MCUs that have core 
architectures from ARM and occupied with FPU unit.  

Simple floating-point operations like addition and 
multiplication are comparable in clock cycles to an XNOR 
operation [22], while complex floating-point operations like 
division or square root require significantly more clock cycles. 
Specifically, XNOR takes two clock cycles to get performed. 
Each of Adding two integers and shifting operations takes one 
clock cycle. Float addition and multiplication takes two clock 
cycles for each operation to get performed. In FC, for each two 
elements we perform one multiplication (2 clocks) and one 
addition (2 clocks), so it costs 4 clock cycles. In BC, for each 
two elements we perform one XNOR (2 clocks), several add 
operations (1 clock for each) and several shift operations (1 
clock for each). XNOROP always requires just one XNOR 
operation no matter what the bus or lookup table sizes are. 
What is left for us is to determine exactly the number of add 
and shift operations involved in one XNOROP. 

 Suppose that we have a hardware with a bus size B  where 
 2,4,8,16,32,64,128B , and a lookup table of size S . S  

obeys the inequality 2BS   because on a hardware with bus B  
we can’t store numbers bigger than 2B  unless we implement a 
special storing mechanism, which increase cost of XNOROP. 
If 2BS   then we can do set-bits counting only one add 
operation and one access to the created lookup table. If 

/2B dS  , where  1,2,4,...,d B , then we would need d  add 

operations and 1d   shift operation to perform one XNOROP. 
Table II shows the number of shift and add operations required 
to do one XNOROP for different bus and lookup table sizes. 
Cases that don’t match the condition of 2BS   are ignored and 
represented as “–” in table II. Last wo columns of table II are 
shaded in gray because by now there is no mechanism that 
allows us to store lookup tables of such sizes. We indeed need 
to model these different sizes of lookup table for different bus 
sizes because the resources on a chosen target hardware on 
which we might deploy our BNN model vary so much.  

TABLE II. SHIFT AND ADD OPERATIONS REQUIRED TO PERFORM ONE 

XNOROP FOR DIFFERENT BUS AND LOOKUP TABLE SIZES 

S  

B  
22  42  82  162  322  642  1282  

2 1 – – – – – – 
4 3 1 – – – – – 
8 7 3 1 – – – – 

16 15 7 3 1 – – – 
32 31 15 7 3 1 – – 
64 63 31 15 7 3 1 – 
128 127 63 31 15 7 3 1 

 

In summary, doing FC operation between two blocks of 
size one element takes 4 clock cycles, while doing BC takes 
2 1 2 1d d d      clock cycles. If we represent the cost of 
FC as FCC  and the cost of BC as BCC , then the relationship 

between the two operations could be represented as: 

 
   

 
/ 2 1 / 4;

           2
1,2,4,..., , 2,4,8,16,32,64,128

BC FCr C C d

d B B

   


  
 

Fig. 4 is a representation of equation 2. As we can see if 
1d   then BC costs 3 clock cycles. The situation gets worse to 

a degree at which BC costs 64.25  times more clock cycles 
than FC. This is the case when we have a bus size of 128 and 
we choose to create a lookup table of size 1 Byte. In fact, it is 
very important to keep in mind that each time we do an FC, 
we do a convolution operation between two filters of size 1 
element. While in BC we do a BC between two filters of size 
B  elements (bus size), which is the core idea of compression 
method. In other words, approximately (without taking 
memory access into consideration), for a specified time unit, 
we can do inference using a BNN that has /B r   times more 
parameters than the float NN. An example of that, if we have 
bus size of 32, then /B r  goes from   32 / 2 32 1 / 4 1.97     

up to   32 / 2 16 1 / 4 42.67    more parameters in BNN 

model. 

ISSN 2305-7254________________________________________PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 731 ----------------------------------------------------------------------------



 

Fig. 4. Relationship between execution cost of BC and FC in terms of clock 
cycles for different sizes of lookup table. 

This compression method enables us to write a 
mathematical expression that expresses the quantity of 
XNOROPs operation in a convolution layer as: 

/                  (3)i j k i j kXNOROPs s s s B O O O         

Where , ,i j ks s s  are filter dimensions ks  of which 

corresponds to the number of input channels, B  is bus size, or 
core registers size, , ,i j kO O O  are layer output dimensions,     

is the ceil function that takes the integer upper bound of a float 
number. As we mentioned, the term XNOROPs represents the 
quantity of XNOR, integer adds and shift operations. On the 
other hand, the quantity of MACs could be expressed by the 
following equations: 

                        (4)i j k i j kMACs s s s O O O       

From equations 3 and 4 we see that for a chosen layer, the 
quantity of MACs is / /k ks s B     times more than the 

quantity of XNOROPs. We call / /k ks s B    as BNNs 

compression factor. 

There is another important factor that we should consider 
while handling the performance of BCs operations, which is 
memory access times. Each memory access can take up to 7 
clock cycles depending on the type of memory we are 
accessing.  

It is to be noticed that whether we are using float or BC, we 
will store filters weights or the output of the previous layer in 
the same type of memory [23]. So, we can ignore how many 
clock cycles does it takes to access data and instead focus on 
the difference between memory access times between BC and 
FC. 

The proposed binary compression method allows us, as we 
mentioned before, to store B  filters elements in one integer. 
Correspondingly, this reduces memory access times by B  
times. Since filters have 3D  shapes, where the third dimension 
might not be divisible by B , then it is more accurate to state 
that in BC we have memory access times / /k ks s B    less 

than its counterpart in the FC. Fig. 5 shows a plot for the 

relation / /k ks s B    in different scenarios of a convolution 

layer that might exist. All lines in that figure show step-like 
behavior (more noticeable for buses of sizes 64 and 128) and 
this is caused by the ceil function    . Moreover, Fig. 5 

indicates two major points: 

 For a chosen bus size, we gain the optimal performance 
(the biggest saving in operations) when we choose a 
filter size that is divisible by bus size, and this optimal 
saving in quantity of XNOROPs and memory access 
times equals to bus size of the target architecture. For 
example, take a filter of size 128 and a bus of size 64, 
then from Fig. 5 we can tell that saving in operations is 
64x times, which is equal to bus size. So, it is an 
important recommendation while building the 
architecture of BNN to choose filters sizes to be 
divisible by the target platform bus size, on which the 
model will be deployed. 

 For a chosen model, the higher the bus size of the target 
platform the greater savings we get in both XNOROPs 
and memory access times. So, it is recommendable to 
pick a platform with a bus size as large as possible. 

Let’s list the key results that we have obtained by now: 

 BC operation is simplified and then expressed as shown 
in equations 1. 

 Set-bits counting is done using lookup table as 
expressed in algorithm 2, where the bigger the lookup 
table is, the faster we can count set-bits in the integer 
that results from XNOR operation. 

 The proposed binary filters compression method saves 
/ /k ks s B    memory access times less than its float 

counterpart and requires a quantity of XNOROPs that is  
/ /k ks s B      times less that quantity of MACs in its 

float counterpart. 
 ARM CPUs and MCUs might perform XNOROP 

operation faster or slower than MAC operation as 
shown in equation 2. 

 Doing XNOROP convolution at some layer takes 

 22 / /k kr s s B     less clock cycles than FC, where: 

 22 / / / / / /k k k k k k

a b

r s s B r s s B s s B              
.  Here r  

represents the relationship as in equation 2, a  is 
compression factor and b  comes from memory access 
times reduction. 

IV. EXPERIMENT 

To test our theory, we chose the BinaryNet model as an 
example and used it to classify the CIFAR10 dataset. We 
trained the model for 75 epochs then deployed it on the 
STM32F429ZI microcontroller. STM32F429ZI ticks at a 
frequency 180MHz. The microcontroller has bus size of 32 bit. 
In this experiment we use lookup table of size 64 Kbytes. 
BinaryNet is a sequential model, in which layers are stacked 
one after the other. Each image in CIFAR10 has a size of 
32 32 3  . If we refer to Float Convolution layer as FC, 
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Binary Convolution layer as BC, Batch Normalization layer as 
BN, Max Pooling layer as MP, Binary Dense layer as BD, 
then our model is constructed of the following layers in order: 

FC1(32, 3)  BN2()   BC3(128, 3)   MP4(2,2)   
BN5()   BC6(256, 3)   BN7()   BC8(256, 3)   
MP9(2,2)   BN10()   BC11(512, 3)   BN12()   
BC13(512, 3)   MP14(2,2)   BN15()   Flatten16   
BD17(1024)   BN18()   BD19(1024)   BN20()   
BD21(10)   BN22()   Softmax23. The number after each 
layer represents its order in the sequential model, starting from 
1 for FC layer and ending with 23 for SoftMax. 

Binarizing the first and last layers hurts accuracy much 
more than binarizing other layers in the network. Meanwhile, 
the number of weights and operations in these layers are often 
relatively small. Therefore, it has become standard to leave 
these layers in higher precision [24]. 

BCs and BDs layers take most of clock cycles required to 
do an inference in every model we might use, so we will 
analyze the systems -for simplicity- ignoring batch 
normalization and max pooling layers. 

The layer BC3(128, 3) has 128 filters, each of which has a 
size of 30 30 32   and outputs a feature map of size 30 30 128  . 
Using equation 3 we can find that the number of XNOROPs in 
this layer is 3 3 32 / 32 30 30 128 1036k        . Using the 

same equation, we find the number of XNOROPs in all BCs 
and BDs layers as shown in Table III. 

TABLE III. NUMBER OF XNOROPS AND MAC IN FC, BC AND DC LAYERS OF 

BINARYNET MODEL 

Laper XNOROPs MACs 

FC1(32, 3) - 1555k 

BC3(128, 3) 1036k - 

BC6(256, 3) 2073k - 

BC8(256, 3) 4147k - 

BC11(512, 3) 1806k - 

BC13(512, 3) 3612k - 

BD17(1024) 147k - 

BD19(1024) 32k - 

BD21(10) 1k - 

Sum 12854k 1555k 

 
Each MAC operation takes 4 clock cycles as mentioned 

before, but we add to it one more clock cycle to access weights 
from flash memory. While each XNOROP consumes 5 clock 
cycles using equation 2, but also, we add to it one more clock 
cycle to access weights from flash. Knowing that, we can find 
the clock cycles required to do one inference over our model 
as: 

12854 6 1555 5 84899    k clock cycles     

So theoretically, on our target microcontroller, our model 
should run in about 85 /180 0.472Sec , where 
180 180MHz which is controller ticks per second. We 
implemented the inference code on our controller, and it took 
0.511Sec  to do an inference. 

The 0.511 0.472 39 Secm   is the difference in execution 
time between theory and practice. This difference is consumed 
on doing batch normalization, max pooling, binarizing the 
input for each binary layer and timing purposes for system 
timer which requires context switch at each interrupt. So, we 
can say empirically it is better to add about 10% to the 
theoretical estimation of inference time to stay in the safe area. 
It is important to notice that XNOROP is an estimation of 
system performance, not the exact performance. The same fact 
stands for FLOP and MAC as stated in the introduction. 

V. USAGE OF XNOROP TO DETERMINE THE REQUIRED 

HARDWARE 

The XNOROP metric allows us to determine the 
appropriate hardware for our system. In other words, 
XNOROP answers the following question: if we have a model 
M and we would like our model to run at X fps or X inference 
times in a second, what is the necessary hardware that offers 
such a performance. Here we introduce the recipe step by step 
to choose the target hardware: 

 Build up table that represents number of MACs and 
XNOROPs in the model as shown in table III. 

 Calculate the required clock cycles to do one inference 
using equations 2 and 3, then increase the result by 10% 
to stay in safe area. 

 Take the result obtained in the previous step and 
multiply it by the number of inference times needed in 
one second to get the minimum required clock rate. 
Choose a target hardware that offers a clock rate equal 
or bigger than the required clock rate. 

VI. CONCLUSION 

The deployment of BNNs on tiny devices and embedded 
systems is a very interesting and important problem to study. 
The XNOROP metric is a key metric that helps in BNN 
analyzing and simplifies the deployment process over 
embedded devices (CPUs and MCUs). The drawback of this 
metric is that we need to perform calculation over all layers 
manually. There is no API in PyTorch or TensorFlow that 
helps in computing the XNOROP for a chosen model, like 
what exists for FLOP and MAC. We hope that our proposed 
metric will be implemented in the upcoming version of those 
very well-known AI frameworks. 

Although BNNs have some aspects to be used in, a few 
challenges and constraints remain an open issue for research. 
In this paper, we introduced a new metric that expresses the 
complexity of BNNs and number of operations in a BNN. We 
introduced a compression method and with it a compression 
factor that measures the resources that we save using BNNs 
compared to its float counterpart.  
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TABLE I. LOOKUP TABLE OF SIZE 64 KBYTES 

 
Number 0 1 2 3 4 … 65531 65532 65533 65534 65535 

Number of ones 0 1 1 2 1 14 14 15 15 16 
 

 

Fig. 5. Compression factor / /k ks s B    in different scenarios of a convolution layer that might exist. The y access expresses the number of memory access times 

and the factor at which we reduce the XNOROPs with comparison to MACs. The vertical dotted lines were drawn to show at what filter sizes we gain maximum 
reduction in resources usage.
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