
XNOROP: a New Metric for Binary Neural Networks
Performance Measurement

Ali Shakkouf
ITMO University

Saint Petersburg, Russia
ashakkuf@itmo.ru

Gromov Vladislav Sergeevich

ITMO University
Saint Petersburg, Russia

gromov@itmo.ru

Abstract—The quantity of multiply–accumulate operations in
a model (MACs) is a widely used metric in the field of neural
networks and deep learning. This metric expresses the
computational cost of a considered model. However, in Binary
Neural Networks BNNs, we merely have floating point operations
at inference time, we have mostly XNOR binary operations,
hence we can’t use the metric MACs to describe the computation
cost of BNNs. In this paper, we propose XNOROPs; a new metric
that expresses the computation cost of BNNs on Central
Processing Units CPUs and Microcontrollers unit MCUs. A
compression technique for BNNs is introduced to maximize the
usage of CPU and MCU resources, and so reduce the inference
time. The new metric is well explained and built-up step by step
taking into consideration the inner operations cost in terms of
CPU and MCU cycles. XNOROP is related to the well-known
MAC metric by a mathematical equation, enabling us to measure
the number of operations in a binarized model when number of
operations in its float counterpart is provided. Finally, a recipe
that helps is choosing the appropriate hardware for BNNs
deployment using the new XNOROP metric is provided.

I. INTRODUCTION

When evaluating the computational complexity of AI
models, particularly machine learning and deep learning
models, several key metrics can be used to assess and compare
their efficiency. These metrics focus on different aspects of the
model's resource usage, such as time, space, and the number of
operations involved. In the AI community there are three well-
known metrics to calculate the number of operations involved
in a model, or as a measurement of hardware performance.
Those metrics are called FLOPS, FLOPs and MACs.

FLOPS [1], [2], [3] (with all uppercase is the abbreviation)
stands for floating point operations per second, is a metric
invented by [1] in 1979 which refers to the computation speed
and is generally used as a measurement of hardware
performance (computation capability); like what NVIDIA
provides in the characteristics of its’ GPUs. FLOPs (lowercase
“s” stands for plural) on the other hand, refers to the quantity of
floating-point operations in a model. It is commonly used to
calculate the computation complexity of an algorithm or model.
Also, it is a widely used metric that AI researchers use when
they make improvement in some tasks that goes beyond the
state of the art in some field [4], [5], [6]. MAC [3], [7] stands
for multiply–accumulate operation. MAC represents two
operations, multiplication of two numbers and adding that

product to an accumulator. For example, when working with
different models’ architectures such as DenseNet [8] or
MobileNet [9] or for edge devices, people use MACs or FLOPs
to estimate the model performance.

The reason we use the word “estimate” is that both metrics
are approximations instead of the actual capture of the runtime
performance. However, they still can provide very useful
insights on energy consumption or computational requirements,
which is quite useful in edge computing. The AI community
uses both terms in their research and scientific papers, with the
known assumption that one MAC equals roughly two FLOPs.

In BNNs we do not need to perform multiplication [10],
which is a computationally expensive operation especially for
microcontrollers that don’t have Floating Point Unit FPU [11],
[12]. Bitwise operations are sufficient for this task.
Specifically, we need XNOR and bits count. Knowing those
facts about BNNs, we understand that MACs and FLOPs are
not suitable metrics to calculate computational cost of BNNs.

BNNs are a relatively recent development in the field of
neural networks and machine learning. It emerged in 2015 and
is used in a model called BinaryConnect [13]. The concept of
binary neural networks, which involves using binary weights
and activations to significantly reduce computational
complexity and memory usage, gained significant attention
since then.

Till now, there is no known metric that measures the
computation cost of BNNs during inference time. Also, there is
no metric that expresses the quantity of operations and type of
those operations in BNNs. In other words, if we have a BNN
model ready to be deployed on some embedded device, we
can’t use any known metric that measures inference time or
execution cost of the model on the target device. The only
metric that exists by now is Binary Operations Per Second
(BOPS) [14], which basically researchers apply to modern
datacenter computing workloads, which often involve a
significant proportion of non-floating-point operations.
However, for BNNs, no metric can express the computation
cost without taking the bus size [15] (core registers size) of the
target device into consideration.

From now on, in the main text (except section titles) we
will refer to Float Convolution as FC and Binary Convolution
as BC. The contributions of this paper are:

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 728 --

 We propose a new approach to compress BNNs and do
BC effectively.

 XNOROP: a new metric that expresses the computation
cost of BNNs on target CPUs or MCUs, with
mathematical relations to calculate it.

 Mathematical approximations of the relationship
between our metric XNOROPs and the well-known
MACs metric.

 Recommendations for the design of BNNs and its filters
sizes to achieve optimal usage of system resources.

The paper is organized as follows. Part 2 clarifies the
concept of BNN compression and BC. Part 3 discusses and
shows the cost of MAC and XNOROP in terms of CPU cycles
and memory access times. In part 4 we show the deployment
process of BinaryNet model as a test of our theory on the new
metric. Part 5 provides a recipe that helps in choosing the
appropriate hardware for a chosen BNN model performance
using XNOROP metric.

II. BNN COMPRESSION AND BINARY CONVOLUTION

A. Binary convolution

Let’s study a simple example of a convolution operation
between two filters of size 3 3 . Let’s take:

1 2

1 1 1 1 1 1

1 1 1 , 1 1 1

1 1 1 1 1 1

f f

Then the convolution result is:

1 2 1.(1) (1).1 (1).(1) (1).1 1.(1) 1.(1) ...

 1.(1) (1).1 1.1 5

f f

In BNNs, weights that have the value -1 are represented as
0 and weights that have the value 1 are represented as 1. This
is because it is physically what we can store in one bit of
memory, bit could only be set or reset. We therefore need to
find a cost-effective method to do BC.

If we replace each -1 by 0, we will obtain convolution result
as:

1 2 1.0 0.1 0.0 0.1 1.0 1.0 1.0 0.1 1.1 1f f

Which is not correct. The correct answer is 5 not 1 . A
closer observation on the previous convolution operation
shows us that we obtain 1 when we multiply one by one
(1 1) or minus one by minus one (1 1), where minus
one is represented as 0 , so 1 1 0 0 . This logical
behavior is the XNOR operation, truth table and gate for
which are shown in Fig. 1. In other words, we can do BС by
doing an XNOR between the two filters, and then counting the
number of set bits in the binary representation of XNOR
operation result.

What is left for us now is set-bits counting, taking into
consideration that 0 is actually a -1 and XNOR is equal to
NOT XOR. For our example we have:

~ (100011101^ 010100011) ~ (110111110) 001000001

Where ~ is the logical bitwise NOT operation. Now we
count the number of ones and zeros to find the result of
convolution as:

1 2

1

1 2
0

1

1 2
0

1 2

1 2

1 Re 1

Re 1: 0, ,

1: 1, ,

1 () 1

2

f f

i i
i

f f

i i
i

f f NumberOf setBits NumberOfSetBits

NumberOf setBits b b XNOR f f

NumberOfSetBits b b XNOR f f

f f FilterSize NumberOfSetBits NumberOfSetBits

f f Num

1

1 2 1 2
0

2 1: 1, ,
f f

i i
i

berOfSetBits FilterSize

f f b b XNOR f f f f

Where ib is the value of bit i . Let’s rewrite the convolution

operation:

1

1 2
0

1

0

2 1: 1, ~ (100011101^ 010100011) 9

 2 1: 1, ~ (110111110) 9 4 9 5

f f

i i
i

f f

i i
i

f f b b

b b

Where 9 is filter size, which in our case is 3 3 9 , ^ is the
XOR operation. Therefore, the math behind a BC is:

1

1 2 1 2
0

2 1: 1, , (1)
f f

i i
i

c f f b b XNOR f f f f

Fig. 1. XNOR gate mathematical representation and truth table

B. How to count set bits in binary representation
effectively?

The intuitive method to do set-bits counting is by checking
the Least Significant Bit (LSB) whether it is 1 or 0, after that
we shift the number to the right by 1, and again check the LSB
whether it is 1 or 0. This is repeated n times, where n is filter
size, as shown in Algorithm 1.

Algorithm 1 set-bits counting by shifting

1f : first filter.

2f : second filter.

xnor : XNOR (1 2,f f)

s : filter size
0res : convolution result

For i from 0 to 1s do
 If ib is equal to 1 then

 1res res
 end
 xnor shift xnor to the right by 1
end

2res res s

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 729 --

For most modern processors across different architectures,
basic shift operations generally get performed in a single clock
cycle. However, the exact number of cycles can depend on
factors such as the specific instruction the core can handle, the
number of bits being shifted, and the processor's
microarchitecture. Since ARM CPUs and MCUs are the most
used hardware for embedded systems we will consider it and
build our analysis targeting its devices. Performing one XNOR
operation takes two CPU cycles, one cycle to do XOR [16]
(here we neglect the cycles required to access data from
memory and discuss it at a later stage), and the other cycle to
do the logic NOT [16] operation. Shift operation takes also
one CPU cycle [16], which seems quite fast. However, if BNN
has millions of convolution operations, and if data type is
unsigned integer 32bits, then for each convolution we have 31
shifting operations, 32 comparisons, 32 add operations and
some CPU cycles to access data from memory. This leads us
to a situation in which Micro-Controller Units (MCUs) that
tick with few hundreds of MHz will merely do one million
BCs in one second, and this is very computationally expensive
and unsuitable for real time applications.

We introduce a more efficient way to do set-bits counting
using lookup tables. The idea is to create a matrix, or a lookup
table, in which we store the number of set bits for numbers
from 0 to 3, 15, 255, 65535 or 4294967296, depending on how
large the free memory is, what it allows us to store in it and
core registers sizes. Table I shows an example of lookup table
of size 64 Kbytes. The numbers 3, 15, 255, 65535 and
4294967296 are equal to 2 4 8 162 1, 2 1, 2 1, 2 1, 322 1
respectively. The reason we chose those numbers is because
they correspond to the used overtime bus sizes in core
architectures of CPUs and MCUs [17], [18], [19], [20]. The
Bus size of 64 or 128 bits is not considered, because storing a
lookup table of size 64 2 or 128 2 in not feasible; requires a
huge amount of memory that can’t be created.

Table I occupies 65536 / 1024 64 Kbytes to store in
memory. So now when we want to find the number of ones in
an unsigned integer 32bits, we simply take the first half of the
number (one clock cycle) and lookup for number of ones in
the matrix (one access for memory), then take the second half
of the number (another clock cycle) and lookup for number of
ones in the matrix. And finally, sum up the two numbers
together. The operations are one shift, one sum operation and
two memory access. So, we moved from more than 64 logical
operations in the first solution to 1 operation in the second
solution, from 32 sum operation to 1 sum operation and from
64 times of memory access to only two memory accesses.
which is quite good optimization.

The idea of doing BC using lookup tables is probably the
fastest approach to be used. We did simple modeling that
shows how fast we can do set-bits counting using lookup
tables approach for tables of sizes 4, 16, 255, 64K Bytes and
the slow shifting approach. In this experiment we simulate set-
bits counting for numbers from 0 up to 1 million. Modeling
results are shown in Fig. 2. It is to be noticed that using lookup
table of size 64 Kbytes is 1635 Sec/ 61 Sec 25.80m m faster
than counting by shifting. Where 1635 Secm is the time
consumed by STM32F429ZI microcontroller to do set-bits

counting by shifting, while 61mSec is consumed using lookup
table of size 64 Kbytes. Also, we notice that we gain a linear
decrease in time for doing the same operations as we increase
the size of the table, which as we mentioned before,
corresponds to architecture bus and registers sizes [17], [18],
[19], [20]. Algorithm 2 demonstrates pseudocode for doing
XNOR using lookup table of size 64 Kbytes. The same
algorithm is used in case we have lookup table smaller in size.
The only difference is the number of shift and add operations,
and number of lookup table accesses for one XNOR.

Algorithm 2 set-bits counting using lookup table of size
64 Kbytes and bus size is 32bit

1f : first filter.

2f : second filter.

xnor : XNOR (1 2,f f)

0res : convolution result
[& 0]res LOOKUP xnor xFFFF // & is a cast instruction

[16]res res LOOKUP xnor

Fig. 2. Set bits counting. Count by shifting is represented in Algorithm 1.
Count via lookup table of size 64 Kbytes is represented in Algorithm 2. The
latter is 1635 Sec/ 61 Sec 25.80m m faster than the count by shifting.

C. Binary filters compressing for fast binary convolution

BC does not just replace MACs operation by XNOR and
shift operations, but their quantity will be about 4, 8, 16, 32,
64 or 128 (bus size) times less than the quantity of MACs to
calculate the output of a convolution layer of some size. To

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 730 --

demonstrate this idea let’s take a convolution layer and
proceed in performing BC operation using lookup tables. We
study a simple case of two consecutive convolutions blocks as
shown in Fig. 3.

Fig. 3. Two Consecutive conv-layers 64 128 3 3 ,128 128 3 3

Since filter size is 3 3 128 and it is a binary filter; each
element of this filter has one of two values 0 or 1, then we can
compress this filter (assuming that bus size of target
architecture is 32) to be of dimensions 3 3 4 where each
element of the compressed filter is 32-bit unsigned integer that
represents a chunk of the source filter, size of which is
1 1 32 . This compression leads to replacement of
3 3 128 5 5 28800 MACs with only 03 3 4 5 95 0
XNOR operations, 900 2 add operation and 900 shift
operations, which is a huge improvement in performance. It is
to be noticed that when the hardware doesn’t have FPU unit,
then using BC boosts the performance to a level of
optimization that is several hundred times faster than FC.

We call the combination of shift, add, and XNOR
operations required to perform a BC between two parameters
as XNOROP. So, we state that XNOROP expresses the simple
logic operations required to perform BC between two integer
elements. We decided to join the three types of operations in
one term, because we would like our new metric to be
comparable to MAC, which expresses float addition and
multiplication operations [21].

III. COST OF MAC AND XNOROP

To compare MAC and XNOROP operations in terms of
clock cycles, we need to consider how each operation is
implemented and executed on CPUs and MCUs that have core
architectures from ARM and occupied with FPU unit.

Simple floating-point operations like addition and
multiplication are comparable in clock cycles to an XNOR
operation [22], while complex floating-point operations like
division or square root require significantly more clock cycles.
Specifically, XNOR takes two clock cycles to get performed.
Each of Adding two integers and shifting operations takes one
clock cycle. Float addition and multiplication takes two clock
cycles for each operation to get performed. In FC, for each two
elements we perform one multiplication (2 clocks) and one
addition (2 clocks), so it costs 4 clock cycles. In BC, for each
two elements we perform one XNOR (2 clocks), several add
operations (1 clock for each) and several shift operations (1
clock for each). XNOROP always requires just one XNOR
operation no matter what the bus or lookup table sizes are.
What is left for us is to determine exactly the number of add
and shift operations involved in one XNOROP.

 Suppose that we have a hardware with a bus size B where
 2,4,8,16,32,64,128B , and a lookup table of size S . S

obeys the inequality 2BS because on a hardware with bus B
we can’t store numbers bigger than 2B unless we implement a
special storing mechanism, which increase cost of XNOROP.
If 2BS then we can do set-bits counting only one add
operation and one access to the created lookup table. If

/2B dS , where 1,2,4,...,d B , then we would need d add

operations and 1d shift operation to perform one XNOROP.
Table II shows the number of shift and add operations required
to do one XNOROP for different bus and lookup table sizes.
Cases that don’t match the condition of 2BS are ignored and
represented as “–” in table II. Last wo columns of table II are
shaded in gray because by now there is no mechanism that
allows us to store lookup tables of such sizes. We indeed need
to model these different sizes of lookup table for different bus
sizes because the resources on a chosen target hardware on
which we might deploy our BNN model vary so much.

TABLE II. SHIFT AND ADD OPERATIONS REQUIRED TO PERFORM ONE

XNOROP FOR DIFFERENT BUS AND LOOKUP TABLE SIZES

S

B
22 42 82 162 322 642 1282

2 1 – – – – – –
4 3 1 – – – – –
8 7 3 1 – – – –

16 15 7 3 1 – – –
32 31 15 7 3 1 – –
64 63 31 15 7 3 1 –
128 127 63 31 15 7 3 1

In summary, doing FC operation between two blocks of
size one element takes 4 clock cycles, while doing BC takes
2 1 2 1d d d clock cycles. If we represent the cost of
FC as FCC and the cost of BC as BCC , then the relationship

between the two operations could be represented as:

/ 2 1 / 4;

 2
1,2,4,..., , 2,4,8,16,32,64,128

BC FCr C C d

d B B

Fig. 4 is a representation of equation 2. As we can see if
1d then BC costs 3 clock cycles. The situation gets worse to

a degree at which BC costs 64.25 times more clock cycles
than FC. This is the case when we have a bus size of 128 and
we choose to create a lookup table of size 1 Byte. In fact, it is
very important to keep in mind that each time we do an FC,
we do a convolution operation between two filters of size 1
element. While in BC we do a BC between two filters of size
B elements (bus size), which is the core idea of compression
method. In other words, approximately (without taking
memory access into consideration), for a specified time unit,
we can do inference using a BNN that has /B r times more
parameters than the float NN. An example of that, if we have
bus size of 32, then /B r goes from 32 / 2 32 1 / 4 1.97

up to 32 / 2 16 1 / 4 42.67 more parameters in BNN

model.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 731 --

Fig. 4. Relationship between execution cost of BC and FC in terms of clock
cycles for different sizes of lookup table.

This compression method enables us to write a
mathematical expression that expresses the quantity of
XNOROPs operation in a convolution layer as:

/ (3)i j k i j kXNOROPs s s s B O O O

Where , ,i j ks s s are filter dimensions ks of which

corresponds to the number of input channels, B is bus size, or
core registers size, , ,i j kO O O are layer output dimensions,

is the ceil function that takes the integer upper bound of a float
number. As we mentioned, the term XNOROPs represents the
quantity of XNOR, integer adds and shift operations. On the
other hand, the quantity of MACs could be expressed by the
following equations:

 (4)i j k i j kMACs s s s O O O

From equations 3 and 4 we see that for a chosen layer, the
quantity of MACs is / /k ks s B times more than the

quantity of XNOROPs. We call / /k ks s B as BNNs

compression factor.

There is another important factor that we should consider
while handling the performance of BCs operations, which is
memory access times. Each memory access can take up to 7
clock cycles depending on the type of memory we are
accessing.

It is to be noticed that whether we are using float or BC, we
will store filters weights or the output of the previous layer in
the same type of memory [23]. So, we can ignore how many
clock cycles does it takes to access data and instead focus on
the difference between memory access times between BC and
FC.

The proposed binary compression method allows us, as we
mentioned before, to store B filters elements in one integer.
Correspondingly, this reduces memory access times by B
times. Since filters have 3D shapes, where the third dimension
might not be divisible by B , then it is more accurate to state
that in BC we have memory access times / /k ks s B less

than its counterpart in the FC. Fig. 5 shows a plot for the

relation / /k ks s B in different scenarios of a convolution

layer that might exist. All lines in that figure show step-like
behavior (more noticeable for buses of sizes 64 and 128) and
this is caused by the ceil function . Moreover, Fig. 5

indicates two major points:

 For a chosen bus size, we gain the optimal performance
(the biggest saving in operations) when we choose a
filter size that is divisible by bus size, and this optimal
saving in quantity of XNOROPs and memory access
times equals to bus size of the target architecture. For
example, take a filter of size 128 and a bus of size 64,
then from Fig. 5 we can tell that saving in operations is
64x times, which is equal to bus size. So, it is an
important recommendation while building the
architecture of BNN to choose filters sizes to be
divisible by the target platform bus size, on which the
model will be deployed.

 For a chosen model, the higher the bus size of the target
platform the greater savings we get in both XNOROPs
and memory access times. So, it is recommendable to
pick a platform with a bus size as large as possible.

Let’s list the key results that we have obtained by now:

 BC operation is simplified and then expressed as shown
in equations 1.

 Set-bits counting is done using lookup table as
expressed in algorithm 2, where the bigger the lookup
table is, the faster we can count set-bits in the integer
that results from XNOR operation.

 The proposed binary filters compression method saves
/ /k ks s B memory access times less than its float

counterpart and requires a quantity of XNOROPs that is
/ /k ks s B times less that quantity of MACs in its

float counterpart.
 ARM CPUs and MCUs might perform XNOROP

operation faster or slower than MAC operation as
shown in equation 2.

 Doing XNOROP convolution at some layer takes

 22 / /k kr s s B less clock cycles than FC, where:

 22 / / / / / /k k k k k k

a b

r s s B r s s B s s B
. Here r

represents the relationship as in equation 2, a is
compression factor and b comes from memory access
times reduction.

IV. EXPERIMENT

To test our theory, we chose the BinaryNet model as an
example and used it to classify the CIFAR10 dataset. We
trained the model for 75 epochs then deployed it on the
STM32F429ZI microcontroller. STM32F429ZI ticks at a
frequency 180MHz. The microcontroller has bus size of 32 bit.
In this experiment we use lookup table of size 64 Kbytes.
BinaryNet is a sequential model, in which layers are stacked
one after the other. Each image in CIFAR10 has a size of
32 32 3 . If we refer to Float Convolution layer as FC,

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 732 --

Binary Convolution layer as BC, Batch Normalization layer as
BN, Max Pooling layer as MP, Binary Dense layer as BD,
then our model is constructed of the following layers in order:

FC1(32, 3) BN2() BC3(128, 3) MP4(2,2)
BN5() BC6(256, 3) BN7() BC8(256, 3)
MP9(2,2) BN10() BC11(512, 3) BN12()
BC13(512, 3) MP14(2,2) BN15() Flatten16
BD17(1024) BN18() BD19(1024) BN20()
BD21(10) BN22() Softmax23. The number after each
layer represents its order in the sequential model, starting from
1 for FC layer and ending with 23 for SoftMax.

Binarizing the first and last layers hurts accuracy much
more than binarizing other layers in the network. Meanwhile,
the number of weights and operations in these layers are often
relatively small. Therefore, it has become standard to leave
these layers in higher precision [24].

BCs and BDs layers take most of clock cycles required to
do an inference in every model we might use, so we will
analyze the systems -for simplicity- ignoring batch
normalization and max pooling layers.

The layer BC3(128, 3) has 128 filters, each of which has a
size of 30 30 32 and outputs a feature map of size 30 30 128 .
Using equation 3 we can find that the number of XNOROPs in
this layer is 3 3 32 / 32 30 30 128 1036k . Using the

same equation, we find the number of XNOROPs in all BCs
and BDs layers as shown in Table III.

TABLE III. NUMBER OF XNOROPS AND MAC IN FC, BC AND DC LAYERS OF

BINARYNET MODEL

Laper XNOROPs MACs

FC1(32, 3) - 1555k

BC3(128, 3) 1036k -

BC6(256, 3) 2073k -

BC8(256, 3) 4147k -

BC11(512, 3) 1806k -

BC13(512, 3) 3612k -

BD17(1024) 147k -

BD19(1024) 32k -

BD21(10) 1k -

Sum 12854k 1555k

Each MAC operation takes 4 clock cycles as mentioned

before, but we add to it one more clock cycle to access weights
from flash memory. While each XNOROP consumes 5 clock
cycles using equation 2, but also, we add to it one more clock
cycle to access weights from flash. Knowing that, we can find
the clock cycles required to do one inference over our model
as:

12854 6 1555 5 84899 k clock cycles

So theoretically, on our target microcontroller, our model
should run in about 85 /180 0.472Sec , where
180 180MHz which is controller ticks per second. We
implemented the inference code on our controller, and it took
0.511Sec to do an inference.

The 0.511 0.472 39 Secm is the difference in execution
time between theory and practice. This difference is consumed
on doing batch normalization, max pooling, binarizing the
input for each binary layer and timing purposes for system
timer which requires context switch at each interrupt. So, we
can say empirically it is better to add about 10% to the
theoretical estimation of inference time to stay in the safe area.
It is important to notice that XNOROP is an estimation of
system performance, not the exact performance. The same fact
stands for FLOP and MAC as stated in the introduction.

V. USAGE OF XNOROP TO DETERMINE THE REQUIRED

HARDWARE

The XNOROP metric allows us to determine the
appropriate hardware for our system. In other words,
XNOROP answers the following question: if we have a model
M and we would like our model to run at X fps or X inference
times in a second, what is the necessary hardware that offers
such a performance. Here we introduce the recipe step by step
to choose the target hardware:

 Build up table that represents number of MACs and
XNOROPs in the model as shown in table III.

 Calculate the required clock cycles to do one inference
using equations 2 and 3, then increase the result by 10%
to stay in safe area.

 Take the result obtained in the previous step and
multiply it by the number of inference times needed in
one second to get the minimum required clock rate.
Choose a target hardware that offers a clock rate equal
or bigger than the required clock rate.

VI. CONCLUSION

The deployment of BNNs on tiny devices and embedded
systems is a very interesting and important problem to study.
The XNOROP metric is a key metric that helps in BNN
analyzing and simplifies the deployment process over
embedded devices (CPUs and MCUs). The drawback of this
metric is that we need to perform calculation over all layers
manually. There is no API in PyTorch or TensorFlow that
helps in computing the XNOROP for a chosen model, like
what exists for FLOP and MAC. We hope that our proposed
metric will be implemented in the upcoming version of those
very well-known AI frameworks.

Although BNNs have some aspects to be used in, a few
challenges and constraints remain an open issue for research.
In this paper, we introduced a new metric that expresses the
complexity of BNNs and number of operations in a BNN. We
introduced a compression method and with it a compression
factor that measures the resources that we save using BNNs
compared to its float counterpart.

 ACKNOWLEDGMENT

We would like to thank the team-lead in intelligent roads
company and the administration, Dean and Dean assistant of
the control systems and robotics for their support and the big
facilities they provided to get this research done.

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 733 --

TABLE I. LOOKUP TABLE OF SIZE 64 KBYTES

Number 0 1 2 3 4 … 65531 65532 65533 65534 65535

Number of ones 0 1 1 2 1 14 14 15 15 16

Fig. 5. Compression factor / /k ks s B in different scenarios of a convolution layer that might exist. The y access expresses the number of memory access times

and the factor at which we reduce the XNOROPs with comparison to MACs. The vertical dotted lines were drawn to show at what filter sizes we gain maximum
reduction in resources usage.

REFERENCES
[1] Dongarra, J. (1979). Performance of various computers using

standard linear equations software in a Fortran environment. Argonne
National Laboratory Report ANL-80-70, Argonne, Illinois.

[2] FLOPS.” Wikipedia, The Free Encyclopedia, Wikimedia, 11 July
2024, https://en.wikipedia.org/wiki/FLOPS

[3] “Calculate Computational Efficiency of Deep Learning Models with
FLOPs and MACs.” KDnuggets, June 19, 2023,
https://www.kdnuggets.com/2023/06/calculate-computational-
efficiency-deep-learning-models-flops-macs.html

[4] Tan, S., Zhang, Z., Cai, Y., Ergu, D., Wu, L., Hu, B., Yu, P., & Zhao,
Y. (2024). SegStitch: Multidimensional Transformer for Robust and
Efficient Medical Imaging Segmentation.
https://arxiv.org/abs/2408.00496

[5] Lin, X. V., Shrivastava, A., Luo, L., Iyer, S., Lewis, M., Gosh, G.,
Zettlemoyer, L., & Aghajanyan, A. (2024). MoMa: Efficient Early-
Fusion Pre-training with Mixture of Modality-Aware Experts.
https://arxiv.org/abs/2407.21770

[6] Cui, Z., Yao, J., Zeng, L., Yang, J., Liu, W., & Wang, X. (2024).
LKCell: Efficient Cell Nuclei Instance Segmentation with Large
Convolution Kernels. https://arxiv.org/abs/2407.18054

[7] “Multiply–accumulate operation.” Wikipedia, The Free
Encyclopedia, Wikimedia Foundation, 12 July 2024,
https://en.wikipedia.org/wiki/Multiply–accumulate_operation

[8] Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2018).
Densely Connected Convolutional Networks.
https://arxiv.org/abs/1608.06993

[9] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision
Applications. https://arxiv.org/abs/1704.04861.

[10] Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016).
XNOR-Net: ImageNet Classification Using Binary Convolutional
Neural Networks. https://arxiv.org/abs/1603.05279.

[11] ARM Holdings. (2014). ARM Cortex-M4 processor technical
reference manual. Retrieved from https://developer.arm.com

[12] Texas Instruments. (2005). TMS320C2000 series technical reference
manual. Retrieved from https://www.ti.com

[13] Courbariaux, M., Bengio, Y., & David, J.-P. (2016). BinaryConnect:
Training Deep Neural Networks with binary weights during
propagations. https://arxiv.org/abs/1511.00363

[14] Wang, L., Zhan, J., Gao, W., Yang, K., Jiang, Z., Ren, R., He, X., &
Luo, C. (2019). BOPS, Not FLOPS! A New Metric and Roofline
Performance Model For Datacenter Computing.
https://arxiv.org/abs/1801.09212

[15] ARM Holdings. (2021). ARM Architecture Reference Manual
ARMv8, for ARMv8-A architecture profile. Retrieved from ARM
Developer

[16] ARM Holdings. (2014). ARM Cortex-M4 processor technical
reference manual (Rev. r0p1). Retrieved from
https://developer.arm.com/documentation/ddi0439/latest

[17] Intel Corporation. *Intel 4004 Microprocessor Data Sheet*. Intel,
1971.
https://www.intel.com/content/dam/www/public/us/en/documents/dat
asheets/4004-datasheet.pdf.

[18] Microchip Technology Inc. ATmega328P Datasheet. Microchip
Technology Inc., 2016,
https://www.microchip.com/wwwproducts/en/ATmega328P.

[19] STMicroelectronics. STM32F429ZI Manual. STMicroelectronics,
2020,
https://www.st.com/resource/en/reference_manual/dm00031020.pdf.

[20] ARM Limited. ARM Cortex-A76 Reference Manual. ARM Limited,
2018, https://developer.arm.com/documentation/den0024/latest.

[21] Moosmann, J., Bonazzi, P., Li, Y., Bian, S., Mayer, P., Benini, L., &
Magno, M. (2023). Ultra-Efficient On-Device Object Detection on
AI-Integrated Smart Glasses with TinyissimoYOLO.
https://arxiv.org/abs/2311.01057

[22] Engblom, Jakob & Ermedahl, Andreas & Sjdin, M. & Gustafsson,
Jan & Hansson, Hans. (2001). Execution-time analysis for embedded

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 734 --

real-time systems. International Journal on Software Tools for
Technology Transfer - STTT.

[23] H. Miao and F. X. Lin, "Towards Out-of-core Neural Networks on
Microcontrollers," 2022 IEEE/ACM 7th Symposium on Edge
Computing (SEC), Seattle, WA, USA, 2022, pp. 1-13, doi:

10.1109/SEC54971.2022.00008.
[24] Geiger et al., (2020). Larq: An Open-Source Library for Training

Binarized Neural Networks. Journal of Open Source Software, 5(45),
1746, https://doi.org/10.21105/joss.01746

ISSN 2305-7254__PROCEEDING OF THE 36TH CONFERENCE OF FRUCT ASSOCIATION

-- 735 --

