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Abstract—Matching dependency is a generalization of the
functional dependency concept, which allows users to apply
custom similarity functions for matching individual attributes.
Matching dependencies have a wide range of applications for
solving various data quality problems, such as entity resolution,
data deduplication, data integration, schema matching, and
many more. However, their discovery is a very computationally
intensive problem, which limits their practical application.

In this paper, we describe a number of optimization techniques
for HyMD — currently the state-of-the-art algorithm for the
discovery of matching dependencies. These optimizations belong
to both technical and scientific domains. The most important of
them are: 1) a new sampling technique, 2) a faster generalization
lookup technique, and 3) an improved representation of a
dependency. The first one aims to raise the efficiency of inference
from record pairs, while the last two are designed to speed up
lattice-related operations.

To evaluate our optimizations, we implemented our version of
HyMD in Desbordante, an open-source high-performance data
profiler. Experiments demonstrated that they allow for a speedup
of more than 40x over the state-of-the-art implementation on
average, reaching a speedup greater than 170x in some cases.

Finally, the improved version of HyMD is ready to use by
anyone. It comes with bidirectional Python integration, which
allows calling the C++ algorithm implementation from Python
programs while allowing users to supply their custom matching
functions.

I. INTRODUCTION

Data profiling [1] involves extracting various types of in-

formation from data. Such information can range from simple

statistics (e.g. the number of columns in a table) to complex

facts, indicating the presence of various patterns in data. We

refer to the first type of extraction [2] as naive profiling and

to the second one as science-intensive profiling.

Science-intensive data profiling uses computationally costly

algorithms to extract sophisticated patterns from the data, such

as functional dependencies [3], inclusion dependencies [4]),

association rules [5], algebraic constraints [6], inferred se-

mantic data types [7], and others. These patterns represent

knowledge about data and can be used to perform various

tasks in many domains: data quality, data integration, database

management, query optimization, database reverse engineer-

ing, and many more.

One of the well-known patterns is matching dependency

(MD), which is defined on tables. Informally, it states that

for all record pairs where some attribute values are “similar”,

some other attributes are also “similar”.

TABLE I. AIRLINE FLIGHTS

id Source From To Distance (km)

1 ac1 Saint-Petersburg Helsinki 315
2 ac2 St-Petersburg Helsinki 301
3 ac2 Moscow St-Petersburg 650
4 ac2 Moscow St-Petersburg 638
5 ac1 Moscow Saint-Petersburg 670
6 ac1 Moscow Yekaterinburg 1417

Consider an example presented in Table I. It lists airline

routes, which ended up in a single table after data from two

airline carriers (ac1 and ac2) was merged. This data contains

the following MD:

From0.75To0.75 → Distance0.9.

The columns involved have different data types — string

and integer. Therefore different metrics should be used to

specify similarity. For From and To we employ Jaccard

distance over 1-grams, and for Distance we use euclidean

distance.

Basically, it says the following: for each pair of flights

where From and To attributes are close to each other, the

difference between their Distance will be less than 10%. We

set the threshold to consider them close to 0.75. This works

well for the example table, as flights 1 and 2 are close to

each other since their Tos are similar to each other (equal in

this case), while From are within the specified threshold as

distJacc(Saint-Petersburg, St-Petersburg) = 10/13 ≈ 0.76 >
0.75. The same holds true for flights 3–5, considered in a

pairwise manner. Flight number 6 does not have flight records

with similar attribute values, so it is not checked. With this

dependency at hand, a user can clean and deduplicate the

respective data.

Matching dependencies are one of the most important

patterns as they possess significant expressive power, compa-

rable only to differential dependencies [8]. They have sound

theoretical base, such as formal semantics and inference rules

introduced in [9], theory for data cleaning and consistent

query answering problems studied in detail in [10]. In practice

matching dependencies can be used for solving many data

quality problems: record matching, entity resolution, data

deduplication, data integration, data schema matching, defin-

ing and maintaining integrity constraints, and many more.
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Recently, the MDedup [11] system highlighted the useful-

ness of MDs for data deduplication. It is a fully automatic

system for detection of duplicates which requires no domain

knowledge or training data.

The central issue of matching dependency discovery is that

these algorithms have exponential time complexity. Therefore,

sophisticated optimizations are required to ensure practical

viability. At the same time, existing implementations are

merely prototypes intended to demonstrate the viability of

the approach. Moreover, authors consider only the algorithmic

side of the problem, while ignoring the implementation side

completely. In the aforementioned circumstances, it is essential

to make use of any opportunities to speed up dependency

discovery. Finally, existing implementations fail to cater to

user needs: they offer few or no configuration options, are

hard to set up and run, and do not provide Python integration,

as they are stand-alone programs.

We aim to address these issues by implementing our

version of the HyMD algorithm as a part of the Desbor-

dante platform. Desbordante (Spanish for boundless) [2],

[12] is a science-intensive open-source data profiling tool

with a focus on implementation performance. The tool is

also able [13], [14] to discover other types of dependen-

cies, including functional dependencies (exact and approxi-

mate), conditional functional dependencies, order dependen-

cies, and many others. The full list can be found in the

repository (https://github.com/desbordante/desbordante-core/).

Desbordante is not only capable of dependency discovery,

but it can also validate data dependencies, while providing

users with additional information useful in their applications.

Finally, Desbordante is easy to set up and run, it offers a

rich set of configuration options, and all information related

to discovered or validated patterns is available inside Python

programs via Desbordante Python bindings.

Overall, the contribution of this paper is the following:

• A comprehensive study of HyMD — the state-of-the-art

algorithm for the discovery of matching dependencies.

• The first industrial-grade implementation for discovery of

matching dependencies. It is fully open-source and comes

with a Python interface.

• A number of optimization techniques which allows to

achieve up to a 170x speedup (greater than 40x on

average) compared to existing prototypes.

• A discussion of additional optimizations that can improve

performance further.

This paper is organized as follows. In Section II, we

introduce the necessary definitions. Next, in Section III, we

present related work concerning matching dependencies. In

Section IV, we describe the existing algorithm, and in Sec-

tion V, we present our improvements. Their evaluation is

discussed in Section VI, with further possible improvements

discussed in Section VII, and Section VIII concluding the

paper.

II. BACKGROUND

Let’s start by introducing the core definitions for MDs. For

the sake of clarity, we will adhere to the notation used in [15].

Definition 1. A similarity measure ≈ is a function defined

for pairs of values, with a result belonging to the [0.0, 1.0]
range. Semantically, 0.0 indicates that the values are totally

dissimilar, while 1.0 indicates maximum similarity.

Examples of such measures are Levenshtein distance nor-

malized by the maximum string length, Jaccard distance, and

many others.

Definition 2. A decision boundary λ (or ρ) is a possible value

of a similarity measure and is used to determine whether two

values are similar or dissimilar. If the result of a similarity

measure is greater than or equal to the decision boundary, the

values are considered to be similar.

To define a matching dependency, we consider two (poten-

tially identical) relations R and S, attributes Ai ∈ R, Bi ∈ S,

and a set of column matches Ci = (Ai, Bi,≈i) ∈ R×S× ≈.

Column match is a formalization of notion “values in columns

Ai and Bi can be similar to each other relative to metric

≈i”. Note that when R = S, column matches typically map

columns onto themselves in practical use, but when R �= S, a

more complex matching policy can be used. It is also worth

noting that there are no restrictions on the similarity measure,

therefore the columns Ai and Bi in column match Ci can

belong to different domains.

Now, if we add decision boundaries to column matches, we

can formally define matching dependencies:

Definition 3. A matching dependency ϕ(λ, ρj) over a set

of column matches C ⊆ R × S× ≈, decision boundaries for

the left-hand side λ = {λ1, . . . , λm} (where m = |C|) and a

decision boundary for the right-hand side ρj is

(

m∧
i=1

R[Ai] ≈i,λi
S[Bi]) → R[Aj ] ≈j,ρj

S[Bj ]

Note that originally [9] matching dependencies were defined

with a list of attributes on the right-hand side. However, later

it was shown [15] that such form is equivalent to a set of

matching dependencies with a single attribute on the right-

hand side. We will therefore use the simpler notation with a

single attribute following [15].

Definition 4. Given instances r and s of relations R and S,

we say that a pair of records (rk, sl) ∈ r × s matches the
LHS of MD ϕ iff

m∧
i=1

rk[Ai] ≈i sl[Bi] ≥ λi.

Similarly, we say that a pair of records (rk, sl) matches the
RHS of MD ϕ iff

rk[Aj ] ≈j sl[Bj ] ≥ ρj
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Definition 5. Matching dependency ϕ holds for instances r

and s of relations R and S iff ∀(rk, sl) ∈ (r × s) if LHS ϕ
matches (rk, sl) then RHS ϕ matches (rk, sl), or ∀(rk, sl) ∈
(r × s) the following holds:

m∧
i=1

rk[Ai] ≈i,λi
sl[Bi] =⇒ rk[Aj ] ≈j,ρj

sl[Bj ]

With this definition, there are infinitely many MDs for all

non-empty sets of column matches. To meaningfully search for

MDs on datasets, we need to narrow down the search space.

Definition 6. Given instances r and s of relations R and S and

a column match Ci = (Ai, Bi,≈i) ∈ R × S× ≈, a decision

boundary λi is called natural iff

∃(rk, sl) ∈ r × s : rk[Ai] ≈i sl[Bi] = λi.

Thus, a decision boundary is natural when it is an actual

value of similarity between some values in the analyzed

dataset. With this, the search space becomes finite, but still

very large.

Definition 7. We say that ϕ(λ, ρj) subsumes ϕ′(λ′, ρ′j) iff

∀i ∈ [1,m] λi ≤ λ′
i ∧ ρj ≥ ρ′j .

We will denote this fact as ϕ(λ, ρj)  ϕ′(λ′, ρ′j).
We also say that ϕ generalizes ϕ′ and ϕ′ specializes ϕ.

If ϕ(λ, ρj)  ϕ′(λ′, ρ′j) and ϕ(λ, ρj) holds, then ϕ′(λ′, ρ′j)
holds as well. Therefore, it is only necessary to discover MDs

that are not subsumed by any other, as others can be inferred

from them.

Definition 8. MD ϕ(λ, ρj) is minimal iff

�ϕ′ : ϕ′  ϕ ∧ ϕ′ �= ϕ

Outputting only minimal MDs reduces result set size and

discovery time significantly. Still, not all MDs are needed in

practice.

Definition 9. MD ϕ(λ, ρj) is called trivial iff λj ≥ ρj .

Trivial dependencies always hold, independent of data, thus

we do not need to discover them.

However, not all non-trivial MDs are actually useful, since

there are possibly thousands of MDs even in relatively small

datasets, and many of them are not very informative (e.g.

have low similarity thresholds) or purely coincidental and are

discovered only because there is no counterexample present in

a dataset. We will therefore briefly list interestingness criteria

from [15] that allow us to filter out such MDs:

• Cardinality of MD ϕ(λ, ρj) is the number of non-

zero decision boundaries in the LHS. MDs with low

cardinality are “more valuable”, since they are easier to

interpret and are more likely to actually be present in the

domain the underlying data belongs to.

• Support is the number of record pairs in the datasets

that match the LHS of an MD. MDs with high support

are “more valuable”, since high support means that MD

holds for more records in a dataset. Note that if an MD

is defined over a single table (r = s) then its support

is, in the typical case, at least |r| , since each record

is usually matched to itself, but if r �= s, then support

may equal zero. Also, note that an MD with zero support

can be valid, but uninformative, as it does not provide

any information regarding the actual dependencies in the

data.

• Disjointness is a property of an MD which is true iff
λj = 0 when j is the attribute from an RHS. Authors

of [15] have found no practical use for non-disjoint MDs,

so they suggest to prune them from the search space

entirely.

• Decision boundaries with very low thresholds are unin-

teresting, because they are likely to be “accidental” and,

at the same time, are not informative. Natural decision

boundaries that are very close to one another can be

“merged”, as the corresponding MDs will likely provide

the data analyst with the same insights about the analyzed

data. The number of decision boundaries dramatically af-

fects the search space size, and the resulting performance

of the algorithm. Authors of [15] suggest using 0.7 as the

minimal decision boundary value as well as limiting the

number of considered boundaries.

III. RELATED WORK

Matching dependencies were first introduced in [16] and

properly formalized in its expanded version [9]. However, both

of these works did not present an algorithm for MD discovery.

In those works, matching dependencies were defined over two

potentially different tables and used the notion of matching
operator, which is as follows: if an LHS of some matching

dependency holds true for a given pair of tuples, then RHS

attributes are considered to match. This match intuitively

means that they denote the same domain object. These works

also introduce a notion of relative candidate key (RCK) — a

special form of MD that is used to uniquely identify a tuple

in a table. It is similar to the traditional key in relational

databases, but is able to tolerate imprecisions and errors in

data.

The main focus of early works on MDs was on record

matching and data cleaning, with the assumption that MDs

were already known, having been supplied by a domain expert.

The first discovery algorithm for matching dependencies

was proposed by Song and Chen [17] (note that it was a

conference paper, and that there exists an extended journal

version [18]; therefore, we refer all readers interested in the

Song and Chen algorithm to this paper). This algorithm solves

a much simpler task than the later ones, e.g. HyMD [15] and

its modification that is discussed in our work. Their problem

formulation was as follows: given an already known set of

LHS attributes and an RHS attribute of a matching depen-

dency, find decision boundaries for each involved attribute.

Note that they consider only MDs defined over a single table.

The original algorithm differs from HyMD in that it

searches only for approximate decision thresholds, whereas the
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latter identify exact thresholds. The Song and Chen algorithm

is based on a similarity statistics table that contains the proba-

bility of two random pairs of tuples from the relation having a

specified similarity threshold vector. For this similarity statis-

tics table to be non-trivial and feasible for in-memory storage,

they discretize similarity values (for example, mapping them

to natural numbers from 0 to 10, where 0 is equal and 10 is

completely different). Then authors iterate over the similarity

statistics table, pruning MDs by support and confidence (a

fraction of tuple pairs on which an MD holds). Additionally,

during this iteration, the algorithm performs some basic lattice

traversal pruning. Experiments demonstrate that, even with

all of the optimizations, it is still not feasible to use this

algorithm for real-world datasets, as it requires seconds to

process datasets with only several thousands of records and

a dozen of attributes despite solving a much simpler task

than modern algorithms. However, this algorithm can discover

approximate MDs (i.e. MDs that only hold on a specified

fraction of tuples), which makes it useful for inconsistency

detection purposes.

To the best of our knowledge, the latest and fastest algorithm

for MD discovery is HyMD [15]. It is an adaptation of

HyFD [19], an algorithm for exact functional dependencies

discovery from the same authors. Both algorithms are named

“hybrid” because they combine lattice search with inference

of dependencies from pairs of records. Lattice search builds

candidate dependencies and validates them against the data in

the table, discarding candidates that will never hold, and prun-

ing those that are non-minimal or fail to satisfy interestingness

criteria. Lattice search is exponential in the number of table

attributes, but performs very well on “long” datasets. Inference

from record pairs enumerates pairs of tuples in a table and

invalidates dependencies that do not hold on the current pair.

This approach is quadratic in the number of tuples of a

dataset. In hybrid algorithms lattice search and inference from

record pairs work together and support each other — lattice

search provides “interesting” pairs for inference, and inference

invalidates dependencies, thus removing entire branches from

lattice search. HyFD and HyMD switch lattice search and

inference phases when the current phase becomes ineffective.

HyMD, as presented in [15], already uses advanced op-

timization techniques: algorithmic, such as pruning search

space by “interestingness” of MDs, and purely technical, such

as employing dictionary compressed records and similarity

indexes. Our work differs from this as it presents an industrial-

grade implementation of the HyMD algorithm, written in

C++ and containing even more technical optimizations, while

also being ready for integration through the provided Python

bindings.

There are some recent advancements on fast discovery

of other kinds of related dependencies, such as differential

dependencies [20]. Differential dependencies (DDs) are sim-

ilar to MDs in their ability to capture similarity between

values, but they are more expressive as they allow users to

require values to be dissimilar. For example, the fact “if

arguments of cryptographic hash function are close, results

shall significantly differ” can be expressed as a DD with metric

functions that capture “close” and “differ” semantics. MDs

specified over a single relation can be considered a special

case of DDs, but experimental results reported in [20] show

that MDs can be discovered more efficiently, which is not

surprising as DDs are more expressive. On the other hand, the

possibility of adapting a hybrid algorithm for DD discovery

can be worthy of further study.

An overview of other types of data dependencies and their

relations can be found in [21].

IV. ALGORITHM DESCRIPTION

A. Preliminaries

We will now provide a brief overview of building blocks of

the HyMD algorithm, while details and in-depth explanations

can be found in [15].

There are two general ways of discovering data dependen-

cies relevant to HyMD: lattice traversal and inference from
record pairs.

Both rely on a defined product order on the dependencies to

limit the number of dependencies considered. At any point in

the algorithms, only minimal dependencies according to this

order that are assumed to hold are stored. The partially ordered

set of dependencies is a bounded lattice and the structure that

stores the dependencies assumed to be holding is called a

lattice.

Lattice traversal algorithms walk through the space of

possibly valid dependencies in accordance with the afore-

mentioned order, checking whether each candidate holds on

a dataset. A prominent example of this class of algorithms is

the TANE [22] algorithm. Inference-based algorithms consider

some or all pairs of data records, detecting dependencies

that do not hold, and inferring those that do hold. Hybrid

algorithms like HyMD combine these strategies.

Let us consider an example. In order to reduce the number

of natural decision boundaries which we have to consider,

we will modify our original Airline Flights dataset (Table I).

Firstly, we keep only the “From”, “To”, and “Distance”

attributes. Secondly, we keep only the first four rows. The

resulting dataset is presented in Table II.

Furthermore, we will consider only column matches that

map columns to themselves. For “From” and “To” attributes

we will use normalized Levenstein distance as the similarity

measure, and for the “Distance” attribute we will use normal-

ized metric distance. It is calculated according to the following

formula:

d(x, y) = 1− |x− y|
maxDistance

,

where maxDistance is the greatest value for the “Distance”

attribute in the dataset. For simplicity, all values are arithmeti-

cally rounded to one decimal place.

The similarity table for those column matches is given in

table III.

Lattice traversal incrementally builds search space con-

sisting of MDs, starting from the most general MD and

specializing it. Conceptually, there is a separate lattice for
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TABLE II. AIRLINE FLIGHTS (DATASET 
EXCERPT)

id From To Distance (km)

1 Saint-Petersburg Helsinki 315
2 St-Petersburg Helsinki 301
3 Moscow St-Petersburg 650
4 Moscow St-Petersburg 638

TABLE III. AIRLINE FLIGHTS 
SIMILARITY TABLE

Records From To Distance

1, 2 0.9 1.0 1.0
1, 3 0.1 0.2 0.5
1, 4 0.1 0.2 0.5
2, 3 0.1 0.2 0.5
2, 4 0.1 0.2 0.5
3, 4 1.0 1.0 1.0

each attribute in the RHS of a MD, but implementations

often process multiple lattices simultaneously. For our running

example, consider the lattice for the “Distance” attribute given

in Fig. 1 (trivial and non-disjoint MDs are omitted). The

bottom left MD (called “root”) is the most general and top

right is the most specialized. Here, the root MD states that all

values of “Distance” attributes must be equal no matter what

the other attributes are. Top right MD states that, if “From” and

“To” attributes are equal, “Distance” attribute can be anything

(similarity 0.5 is the lowest natural decision boundary in this

dataset, it is impossible for the “Distance” attribute values to

differ more).

We can note that the root MD is the least likely to be valid

on a dataset (but if it holds, it is guaranteed to be minimal and

no other minimal MDs are possible), and that the top right MD

always holds. Each arrow in Fig. 1 represents a single step of

specialization, involving the next natural decision boundary

(increasing for LHS, decreasing for RHS) — the MD at the

start of the arrow subsumes the MD at the end. The main

idea of lattice traversal is to inspect the lattice from the root

(the least element) to the greatest element validating MDs.

If a dependency is found to be invalid, it is removed from

the lattice, and all its specializations that are not subsumed

by other MDs in the lattice (i.e. minimal) are added. All MDs

that are subsumed by a holding MD are guaranteed to hold, so

the lattice can be pruned very efficiently. Intuitively, minimal

holding MDs are located at the border between the bottom-left

region of non-holding MDs and the top-right region of holding

but non-minimal MDs. Minimal holding MD can only have

incoming arrows from non-holding ones.

Inference from record pairs considers a set of MDs and

iterates over the record pairs from the dataset, detecting all

MDs that are violated by the current record pair. During the

process, we maintain a set of candidate MDs Φ, which is

initialized with the root MD at the start. All MDs from Φ
are checked against the current record pair. For those that are

violated, we create several more MDs by either lowering the

RHS decision boundary so that the new MD is not violated by

the pair, or by raising an LHS decision boundary so that the

pair is no longer matched by the new MD’s LHS. We then add

MDs that are minimal. When all record pairs are considered,

Φ contains minimal holding MDs.

B. Algorithm

An overview of the HyMD algorithm is depicted on Fig. 2.

The algorithm uses several supporting data structures:

• Position list indexes (PLIs) — for each column of both

tables, a PLI keeps an array of sets of records (clusters)

that share a value in that column.

• Dictionary compressed records — for both tables, this

structure stores which value each record contains in

every column. Values are represented by their numeric

identifiers, which are indices of the relevant PLI clusters.

• Similarity matrices — for a column match, a similarity

matrix stores information on how similar each value in

the first column is to a value in the second column.

• Similarity indexes — for a column match, a similarity

index maps a value from the first column and a natural

decision boundary to the set of records that have a value

in the second column that is at least as similar to the first

value as the natural decision boundary indicates. Records

are represented by their numeric identifiers, which are in-

dices of the record in the Dictionary Compressed Records

structure.

• Lattice — stores the set of minimal MDs that are

assumed to hold in compact form, as well as providing

some operations for the algorithm to use. It is imple-

mented as a prefix tree, with the root node denoting an

empty LHS and the path to each node specifying a unique

LHS. Each node holds all RHS decision boundaries for

every column match. Initially, the root MD is assumed to

have the greatest possible RHS decision boundaries that

are then lowered during algorithm operation.

The algorithm starts in the preprocessing stage by creating

the first two structures.

The tables are read record-by-record and each value is added

to a value-to-position mapping. The positions from the map-

ping are used as value IDs in Dictionary Compressed Records,

while the record positions are stored in the corresponding

clusters.

The algorithm then proceeds to calculate similarities and

build similarity matrices and indexes. Note that HyMD has an

option to exclude similarities that are below a user-specified

threshold from consideration. In this case they are considered

to be 0.0 and are not stored in order to save space.

Having finished with preprocessing, the algorithm starts the

discovery process.

First, the initial batch of record pairs is sampled, and the

lattice is updated using inference from record pairs. Sampling

in HyMD is quite straightforward: we pick a record from the

first table and compare it to all records from the second table.

We then use those comparison results to update the lattice.

This step ensures lattice traversal starts with a lattice that is

closer to its final state.
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∅ ➔ Distance1.0 From0.1 ➔ Distance1.0 From0.9 ➔ Distance1.0 From1.0 ➔ Distance1.0

∅ ➔ Distance0.5 From0.1 ➔ Distance0.5 From0.9 ➔ Distance0.5 From1.0 ➔ Distance0.5

To0.2 ➔ Distance1.0 From0.1To0.2 ➔ Distance1.0 From0.9To0.2 ➔ Distance1.0 From1.0To0.2 ➔ Distance1.0

To1.0 ➔ Distance1.0 From0.1To1.0 ➔ Distance1.0 From0.9To1.0 ➔ Distance1.0 From1.0To1.0 ➔ Distance1.0

To0.2 ➔ Distance0.5 From0.1To0.2 ➔ Distance0.5 From0.9To0.2 ➔ Distance0.5 From1.0To0.2 ➔ Distance0.5

To1.0 ➔ Distance0.5 From0.1To1.0 ➔ Distance0.5 From0.9To1.0 ➔ Distance0.5 From1.0To1.0 ➔ Distance0.5

Fig. 1. The search space lattice for matching dependencies of our example (Table II) with “Distance” attribute in the RHS. Solid lines denote specializations
of a single attribute in LHS, dashed lines — of the RHS. Bold rectangles denote holding MDs, dashed — minimal holding MDs.

Fig. 2. An overview of the HyMD algorithm, figure from [15].

During lattice traversal, the algorithm picks up MDs from

the lattice, then validates and specializes them until it stops,

regardless of whether all MDs have been validated or not. If

all MDs have been validated, the algorithm stops. Otherwise,

interesting record pairs (recommendations) generated during

this process are passed to the next phase, which uses them to

update the lattice further.
The algorithm continues switching phases, always ending

with lattice traversal, as only this phase can filter out insuffi-

ciently supported MDs.
In the end, the lattice contains all minimal interesting MDs

that hold on the dataset.

V. PROPOSED IMPROVEMENTS

A. Focused sampling
The original sampling strategy proposed in [15] compares

records one by one until inference from record pair becomes

inefficient, according to a heuristic. The heuristics described

in [15] and used in the original implementation are different.

However, we have found our own sampling strategy, described

below, to be superior to using either of them.
The strategy is in some way similar to the focused sampling

proposed in [19] but is adapted for MDs. We sample not by

1 2 9190111078546
1.0 0.8 0.7

Fig. 3. A possible representation of a similarity index.

column, but by column match, choosing out of two available

sub-strategies depending on its parameters until sampling for

all column matches becomes inefficient. The efficiency of each

column match is determined by the ratio of similarity sets

revealing a violation to the total number of pairs compared.

We start with an efficiency threshold of 0.01, returning to the

lattice traversal phase once the ratio falls below this threshold.

The efficiency requirement is relaxed upon returning to the

sampling stage.

In place of comparing a PLI cluster’s records to themselves

in a sliding window manner, as proposed in [19], we make

use of a structure created in the process of building similarity

indexes. Note, for example, that a value that has a similarity

of 0.8 or greater to another value also has a similarity of 0.7
or greater, meaning the record with that value will be present

in both sets of the similarity indexes. It is thus possible to
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Fig. 4. Full sampling illustration

represent a similarity index as an array of record IDs with

pointers to the start/end of the sets of records.

This structure is illustrated in Figure 3. The array of record

IDs is in the top row, and the marks for where record sets

end are in the bottom row. The record set for similarity 1.0
consists of records preceding the 1.0 mark. The record set for

similarity 0.8 consists of records preceding the 0.8, same for

the record set for similarity 0.7. Only the array of records is

used during sampling.

We start with the first sub-strategy — full sampling. For

each value in the first column, we compare all the records in

its PLI cluster with a chosen record from the second column.

We pick it using an index in the array of records from the

similarity index, starting with 0, and then incrementing it for

the next round of sampling. This way, record pairs with higher

similarities for this column match are prioritized.

We illustrate the approach in Figure 4. During the second

round of sampling for a column match, a record with ID 2 is

compared with all records in the first table’s cluster.

It is possible to go further and order the records in such

a way that the similarities in other column matches during

earlier rounds of sampling are higher, in a similar manner

to HyFD’s sorting every cluster so that records with equal

values end up closer together. The way to achieve this is by

sorting with a specific key: for each record we create a list

of similarities, sorted lexicographically, using similar lists for

other column matches as tie-breakers. We obtain this list of

similarities by comparing a record from the second column

with the relevant cluster’s records. The exact column matches

are not important, the only condition would be that, for all

column matches, no two tie-breakers share places in the tie-

breaker orderings. We have not found a significant benefit to

doing that in our experiments, while it reduced performance

significantly on larger datasets. Thus, we have opted not to

sort the records further.

Take note that, in the common case where there is only one
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Fig. 5. Short sampling illustration

table and every column is matched to itself, with all measures

being symmetrical and outputting 1.0 if values are equal (�),

this would result in a lot of repeated similarity sets for the

records contained in a cluster, quickly making record pair

inference inefficient. In this case, a different sampling strategy

is used. It first compares record pairs in a cluster, just like

cluster windowing does in HyFD. After cluster records are

exhausted, the regular full sampling is used.

Note that the last two conditions in � are true for similarity

measures used in practice, with the former one being implied

by the definition in [16]. However, we make it explicit that

we rely on those properties in our implementation.

This method is illustrated in Figure 5. In the first case (on

the left) the parameter of sampling is 3, and the size of the

cluster is 6, so the sampling process does a sliding window

round with the window size of 3. In the second case, the

parameter of sampling is 6, which is not less than the cluster’s

size, thus full sampling is used — record 1 is compared with

all records in the cluster.

Getting the best ordering of the records in the cluster in the

same sense as before can be reformulated as finding a path

in a complete graph with certain properties, and the algorithm

to find such a path can also be used to find a Hamiltonian

path in any graph with polynomial-time transformation of the

input, thus the problem is NP-hard. We still decided to sort the

cluster in this case, but chose a relatively inexpensive sorting

technique, i.e. the one used in HyFD.

With the sampling strategy described above, we have found

that, if the algorithm switched phases after a single round of

lattice traversal, it would spend a lot of time in the inference

phase doing useless work as the lattice would be in the final
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state. We adapted the heuristic from HyFD: we only stop

lattice traversal if the portion of invalidated MDs among all

MDs is above a certain low value. After implementing focused

sampling and this new heuristic, we have found significant

reductions in running time.

B. Ignoring irrelevant nodes when checking for generaliza-
tions

Before reading further, take note of the fact that all RHSs’

decision boundaries are stored in the lattice’s node as an array.

Setting a decision boundary in that array to 0.0 is exactly the

same as removing it from the lattice.

During both inference from record pairs and lattice traversal,

after an MD has been invalidated, its specializations are added

into the lattice, provided they are minimal. The only other time

an MD is added to the lattice is during lattice traversal, when

an MD that used to be there is invalidated. Still, we ensure that

the newly added MD is minimal among all the ones present

in the lattice by checking that the decision boundary is higher

than the greatest decision boundary among all MDs in the

lattice the LHSs of which generalize the LHS of the newly

added MD.

When there is only one MD in the lattice, like at the start

of either phase, it is obviously minimal among all MDs in the

lattice. Thus, by a simple induction argument, we can prove

that at any point during execution of all algorithms specified,

be it lattice traversal, inference from record pairs, or the hybrid

approach, all MDs stored in the lattice structure are minimal.

We can use this fact to our advantage when checking if the

newly added MD is a generalization of another one. It should

be noted that when a new MD is added using addIfMin
(as described in section 5.2 of [15]), its LHS is always a

specialization of another MD that was in it beforehand, and

that the RHS is the same. That previous MD used to be

minimal among all others. During the addition process, the

lattice holds exactly the same MDs as it used to when the

old MD was there, except the decision boundaries of the

invalidated MDs are lower. That means that the lattice MDs

with LHSs that generalize the previously present MD are

certainly not generalizations of the MD we are trying to add.

Thus, these MDs do not need to be checked.

We have not found this optimization in other algorithms,

but it is applicable in FD and UCC mining as well.

C. More optimal LHS representation

Following the example of HyFD, the original implementa-

tion of HyMD used an array of similarities to represent the

LHS of an MD. This would result in a lot of checking for

equality to 0.0 during procedures that traversed the lattice tree,

as 0.0 decision boundaries are left out of the tree during the

algorithm’s operation.

In the new implementation, a different structure to represent

LHSs is used. Instead of an array of similarities, we use an

array of pairs, where the first element is the distance from

the previous column match, and the second one is a non-zero

similarity in that LHS. With this, finding the next non-zero

similarity amounts to incrementing a pointer.

Despite the simplicity of the change, it led to unexpectedly

significant running time improvements.

D. Using decision boundary indices

In the initial implementation, natural decision boundaries

are stored directly in the similarity matrices, similarity indexes,

and in the list of LHS decision bounds that are to be checked.

However, we have found that representing decision boundaries

as their indices in the list of all natural decision boundaries

of a column match allows for additional optimizations. This

comes at a comparably small cost of having to determine the

index of each decision boundary and additional complexity in

the implementation.

Firstly, [15] mentioned an optimization to the

getLowerBoundaries method, where it would stop

traversing the lattice in search of higher decision boundaries

if all decision boundaries become 1.0. However, this situation

is not possible if the lattice is only used during algorithm

execution.

That method is only ever used as part of the validation

process, and only MDs that are actually present in the lattice

are validated. Recall from a prior section that the lattice

structure has an invariant where only minimal MDs of those

assumed to be holding at some point during execution are in

the lattice. If we find that any one RHS boundary reached 1.0,

that means there was an MD stored in the lattice with a more

general LHS and a higher RHS decision boundary than the

one being validated, which violates the stated invariant.

Using this same invariant, we may state a different condition

for this optimization. We abort the operation once all indices

reach exactly one less than the RHS decision boundary indices

being validated, which is, again, in the lattice. Although

this can be applied even if we are working with decision

boundaries directly by stopping once the decision boundary

previous to the ones being validated are reached, working with

indices makes implementation trivial.

We have observed this condition work during execution. On

the adult dataset, this search for the highest decision bound-

aries was skipped entirely 90 times out of 106 validations. On

the flight dataset, there were 14540 validations in total,

with 7748 not having to execute the procedure at all, and 422

stopping early.

E. Other technical improvements

There are a number of technical improvements that we

believe are interesting, but not enough for them to have a

separate section.

Firstly, for each RHS array in every node, we keep count

of non-zero elements in the node. The idea here is to avoid

loading the part of memory where actual values are stored if

we know there are no useful (non-zero) elements in the array.

This reduces cache usage.

Another notable change is that we sort column matches by

the number of LHS decision boundaries searched, ascending.
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This leads to reduced memory usage for the lattice tree, as

fewer pointers to next nodes need to be stored in the deeper

nodes, making a larger portion of the lattice fit into cache.

We also remove nodes from the lattice once they become

empty: all values are zero in the RHS array and there are

no child nodes. It also reduces memory usage, but, more

importantly, some methods, like FindViolated and gener-

alization checking methods, don’t visit those nodes, reducing

running time.

There was another optimization idea, which is to have a

special procedure for adding several RHSs with the same LHS

at once. The rationale was that loading all the nodes that need

to be visited into cache used up a lot of space, but the nodes

were always the same. This did not improve running time, as

adding several RHSs at once is exceedingly rare with the tested

use cases. That might not hold true in the future algorithm

mentioned before if several measures are used for one RHS

column pair.

VI. EVALUATION

To evaluate our techniques, we have developed our

HyMD implementation inside Desbordante and experimen-

tally compared it with the existing HyMD implementa-

tion (https://github.com/HPI-Information-Systems/metanome-

algorithms/tree/master/HyMD) written in Java.

A. Methodology

We posed the following research questions:

RQ1 Is it possible to outperform the existing implementation

just by reimplementing MD discovery algorithm in C++?

RQ2 What is the performance impact of our proposed opti-

mizations?

RQ3 What are the memory savings of the C++ implementa-

tion?

To answer these RQs, we have conducted a number of

experiments:

1) The overall evaluation of three implementations: vanilla

HyMD (Metanome), vanilla HyMD (Desbordante), op-

timized HyMD (Desbordante).

2) A study of the optimized HyMD implementation (Des-

bordante), in which we explored its scalability over rows

and columns.

3) An examination of memory consumption for all three

implementations.

Due to results being relatively stable, each experiment was

repeated 5 times, the average of the results was reported.

Experiments were performed using a number of datasets,

which are presented in Table IV alongside their characteristics.

Experiments were performed using the following hardware

and software configuration. Hardware: Intel(R) Core(TM) i7-

9750H CPU @ 2.60GHz (6 cores, 12 threads), 16 GiB

RAM. Software: Arch linux, glibc 2.40, gcc 14.2.1, OpenJDK

Runtime Environment (build 1.8.0 422-b05).

All runs were performed on one relation, with every column

matched to itself using a single similarity measure: Monge-

Elkan for CORA and Levenshtein for the others.

Fig. 6. Scaling the number of records

Fig. 7. Scaling the number of column matches

B. Experiments

Experiment 1. In this experiment, we studied the over-

all performance of three implementations: vanilla HyMD

(Metanome), vanilla HyMD (Desbordante), and optimized

HyMD (Desbordante). The results are presented in Table V.

In most cases, the optimized implementation was an order of

magnitude faster than the Metanome implementation.

Furthermore, we have separately measured the running

times of each individual phase. These results are shown in

Table VI.

Note that unlike [15], we did not limit the number of LHS

decision boundaries for the CORA dataset, which meant the

number of total possible LHSs for it was on the order of

undecillions, even though the number of records was only

1879. For this dataset, inference from record pairs is obviously

the more fitting algorithm. Both the original implementation

and the rewrite performed poorly in this case, as due to the

switching heuristic used, inference from record pairs stopped

too early. The optimized version used a different sampling

mechanism and switched much later, along with inspecting

more promising record pairs, resulting in a massive 170x

speedup. Note that reimplementing barely gave any speedup.

For this dataset, the vast majority of execution time is spent
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TABLE IV. DATASETS

Dataset Columns Rows Size LHSs #MDs

restaurants 6 864 63.5 KB 106 7

adult 15 32561 3.6 MB 107 111

CIPublicHighway50k 18 50000 3.7 MB 107 280

flights 38 1000 190.7 KB 1015 36637

breast cancer 30 569 120.4 KB 1019 29079

notebook ascii 14 337 194.3 KB 1019 32094

CORA 16 1879 400.3 KB 1037 24155

TABLE V. TOTAL RUNNING 
TIMES (MS)

Dataset Metanome (M) Desbordante (R) Desbordante optimized (O) M/R R/O M/O

adult 33844 7854 4465 4.31 1.76 7.58
breast cancer 1135762 120612 16653 9.42 7.24 68.20

CIPublicHighway50k 247719 107900 49734 2.30 2.17 4.98
CORA 4772748 4588743 28011 1.04 163.82 170.39
flights 202311 43010 2914 4.70 14.76 69.43

notebook ascii 129708 11880 4085 10.92 2.90 31.75
restaurants 2510 163 38 15.40 4.29 66.05

TABLE VI. DETAILED RUNNING 
TIMES (MS)

Dataset Preprocessing Execution Total
M R O M R O M R O

adult 20992 5957 3217 11551 1879 1231 33844 7854 4465
breast cancer 2331 160 98 1133191 120452 16554 1135762 120612 16653

CIPublicHighway50k 215248 94526 37596 30323 13374 12018 247719 107900 49734
CORA 8271 1814 1222 4764118 4586687 26789 4772748 4588743 28011
flights 1835 27 9 200427 42982 2905 202311 43010 2914

notebook ascii 3002 923 149 126641 10929 3935 129708 11880 4085
restaurants 2247 151 34 249 8 4 2510 163 38

TABLE VII. MEMORY (KB)

Dataset Metanome (M) Desbordante (R) Desbordante optimized (O) M/O

adult 1856592 153120 159752 11.62
breast cancer 2313360 483412 145852 15.86

CIPublicHighway50k 2240160 1015840 1208060 1.85
CORA 3022900 4080900 493228 6.13
flights 1887912 666784 124884 15.12

notebook ascii 1737012 189656 66212 26.23
restaurants 663368 8320 15200 43.64

in the implementation equivalent of the FindViolated
method as defined in [15]. We presume that, in this case, the

JIT compilation worked particularly well, which could explain

the small difference.

It should be noted that the preprocessing time decreased

for the optimized version on all datasets relative to the vanilla

version. The optimizations described before concern only the

execution phase of the algorithm, so these numbers only

decreased due to rewriting and using faster metric functions.

There are many other ways to exploit the particular circum-

stances of similarity measure calculation, but they were mostly

not implemented in the optimized version. This area has a lot

of potential for future optimization.

If we inspect the detailed table for the CIPublicHighway

dataset, we will see that the decrease in total runtime was due

to the decrease in preprocessing time, with the execution time

staying almost the same, with just an 11% decrease. On this

dataset, the new sampling helped only a little. However, for

all other datasets, the execution time was reduced dramatically,

which proves this sampling method viable.

If we inspect execution time, we will notice that, aside from

the CORA dataset, simply reimplementing the algorithm in

C++ decreased it.

Experiment 2. In the second experiment, we studied the

scalability of the optimized algorithm over rows and columns.

The CORA dataset was used for this experiment.

The first part was performed on different versions of CORA

that contain a fixed percentage of randomly selected rows.
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The results are shown in the Figure 6. The dashed red line

represents the number of discovered MDs, while the solid blue

one plots the running time. As can be seen, the execution

time does not always increase with the number of records.

This occurs because the increase in the number of rows

affects the algorithm in both ways: while it slows down the

validation procedure, it can also speed up the inference phase

by providing useful MD violations. However, in general, the

time increases and the number of found MDs decreases with

growing number of records. Note that this plot is different from

the Figure 5 of the original HyMD paper, which contained a

similar experiment. This could happen because the authors

of [15] added records to those selected for the previous step

for all steps, while we sampled them randomly.

The second part of this experiment addressed the scalability

of the algorithm over the number of columns. In this case,

the size of the search space grows exponentially, and so does

running time. The results are presented in Figure 7, the same

way as in the first part of the experiment. It is clear that,

as expected, the time grows exponentially, and so does the

number of discovered MDs.

Experiment 3. Here we studied how the memory consump-

tion differed between the three versions of the algorithm. The

results are presented in Table VII.

First, we compared the vanilla versions. This experiment

demonstrated a reduction in memory consumption on all but

one (CORA) datasets. It ranged from 2.2x to 80x, with 16x

being the average.

Then, we compared the optimized version of Desbordante

with Metanome. In all cases, the Desbordante implementation

consumed significantly less memory, more than 10 times

less in most cases. The outlier was the CIPublicHighway50k

dataset, which exhibited only 1.85x memory consumption

reduction. Overall, the reduction ranged from 1.85x to 43.64x

with 17x being the average.

Discussion. Our experiments consistently show that the

answer to RQ1 “Is it possible to outperform existing imple-

mentation just by reimplementing MD discovery algorithm in

C++?” is positive, despite the actual speedup being highly

dependent on dataset. This speedup seems to be unrelated

to JVM options, since in our previous work [23] we had

extensively experimented with a large number of options and

found the default settings to be the best.

Experiment 1 shows that proposed optimizations can pro-

vide additional speedup of up to 163x, again, depending on a

dataset, but consistently significant, which answers the RQ2

“What is the performance impact of our proposed optimiza-

tions?”. The highest speedup can be achieved on datasets with

many values that are similar but not equal (such as CORA),

but such datasets are inherently hard for MD discovery due to

the high amount of possible natural boundaries and LHSs.

RQ3 “What are the memory savings of C++ implementa-

tion?” is more interesting, since, despite the C++ implementa-

tion consistently showing significantly less memory usage than

Java implementation in Metanome, there is no direct correla-

tion between memory consumption of vanilla and optimized

versions. This can be explained by the fact that there are many

factors influencing the memory usage in the algorithm and

they non-trivially depend on the optimizations used. The most

noticeable one on the datasets with many possible MDs is the

size of the lattice, in which case the improved heuristic for

sampling can significantly reduce lattice memory footprint.

However, on those with fewer holding MDs, the similarity

indexes can take up a lot more space than the lattice. In the

optimized version, an array with the same number of elements

as the largest set for a value from the similarity index is stored

for the needs of the sampling procedure, which may explain

the higher memory usage in some cases.

VII. FUTURE WORK

We have noticed that, for all datasets, more than half of the

execution time was spent waiting for memory in lattice-related

methods. It is thus clear that improving the memory layout of

the lattice tree structure is of utmost importance for reducing

running time.

Another way to improve running time is by utilizing the

available throughput. Currently, all lattice-related operations

are designed to be performed in a single thread. Making

use of available concurrency seems to be another avenue of

improvement.

Aside from memory access times, another potential issue

seems to be memory consumption. Similarity indexes are, by

their nature, rather large structures, so some thought should be

put into reducing their size. For example, we were unable to

process the NCVoters and Amazon-Walmart datasets with 32

GB of available memory because the similarity indexes took

up too much space. Compressing similarity indexes in various

ways, such as using value IDs instead of record IDs, looks to

be an important consideration.

In addition to potential improvements, there is a possibility

of using the algorithm with some changes to discover a wider

class of dependencies. The theory of MDs can be reformulated

to allow not only numbers in the [0.0, 1.0] range as results of

similarity measures, but any type with a total order. With these

changes, the class of dependencies the algorithm can discover

will directly subsume metric functional dependencies without

a need for further transformations.

For clarity, it is still possible to extract those dependencies

from the dataset using HyMD by choosing particular measures,

then filtering and transforming the results, although it will be

inefficient. A more efficient mining of this type of dependency

will require a modified algorithm.

VIII. CONCLUSION

In this paper, we have presented a number of optimizations

for HyMD — the state-of-the-art algorithm for discovery

of matching dependencies. Evaluation demonstrated that our

techniques can provide up to a 170x speedup over the existing

implementation. We have also reduced memory consumption

by more than tenfold on average.

The resulting algorithm implementation has become a part

of Desbordante — a science-intensive, high-performance,
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and open-source data profiler (https://github.com/Desbordante/

Desbordante-core/, PR 456). Thus, efficient discovery of

matching dependencies has become available to the broader

public through the Python interface.
Matching dependencies are arguably one of the most impor-

tant patterns. Their efficient discovery is of utmost importance,

as it will allow users to solve various data quality problems.

There are several possible applications:

• Data integrity maintenance within DBMSes. The expec-

tations in regards to flexibility of data consistency rules

are constantly rising, leading to demand for novel ways

of specifying various constraints. Matching Dependencies

can be used as a kind of approximate primary key useful

for records containing complex (e.g. address strings) or

dirty data, or, alternatively, as a way to define a relative

constraint over a table or a pair of tables.

• Master Data Management applications [24], [25], typ-

ically implemented as stand-alone applications. They

address various data quality problems such as detecting

inexact duplicates, performing record or schema match-

ing. In this case, Matching Dependency discovery can be

directly used for designing programs or scripts which will

be used for the aforementioned tasks.

• Data exploration applications (data profilers, such as Des-

bordante) which help users understand their data as well

as provide them with insights and hypotheses concerning

data domain. Matching Dependencies are very expressive

and provide one-of-a-kind type of information.

Overall, we hope that supporting MDs in Desbordante will

bring MDs closer to practical use.
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