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Abstract—Determining driver behavior during road traffic is
an actively researched task, with numerous systems aimed at
identifying dangerous maneuvers, detecting driver fatigue, and
monitoring the driver’s condition. The simplest way to obtain
data for studying driver behavior is to collect vehicle movement
data using a smartphone that utilizes built-in sensors such as
GPS, accelerometers, and gyroscopes. These sensors provide
comprehensive data on the car’s speed, location, acceleration, and
angles of deviation, enabling in-depth research of driver behavior.
However, it is not always possible to obtain accelerometer and
gyroscope data. This paper proposes an algorithm for calculating
accelerometer and gyroscope synthetic data based on GPS that
provide possibilities to classify driver behaviour based on these
synthetic data for devices that do not have accelerometer / gyro-
scope sensors. The method involves constructing quaternions to
describe rotations, followed by conversion to Krylov-Euler angles.
We evaluated proposed method on the dataset that has been
captured in-the-wild during driving vehicles by several drivers.
Developed software that implements the proposed method is
available as open-source.

I. INTRODUCTION

The task of detecting driver behavior during road traffic

is actively being addressed today. Numerous systems aim to

detect dangerous maneuvers [1] and detecting driver state [2],

[3], [4].

The simplest way to obtain data for studying driver behavior

on the road is to collect vehicle movement data using a mobile

device. Modern smartphones are equipped with numerous

built-in sensors, including GPS, accelerometers, gyroscopes,

magnetometers, etc. With these sensors, one can determine the

vehicle’s speed, location, acceleration, and angles of deviation.

This data set provides a wide scope for researching driving

behavior and analyzing road situations.

One possible approach to solve such problems is by tracking

the vehicle’s path and predicting subsequent maneuvers. In this

case, the input data consists of GPS data, which can be used

to reconstruct the driver’s route and attempt to train a system

to predict future actions.

In our previous research [5] we addressed the task of

investigating the correlation between the driver’s experienced

emotion and the type of maneuver being performed. This

paper enhance our previous work and uses captured in-the-wild

dataset DriverMVT (In-Cabin Dataset for Driver Monitoring

including, Video and Vehicle Telemetry Information) [6]. GPS,

gyroscope, and accelerometer data are used to determine the

type of maneuver. The driver’s emotions are identified through

video recordings of their face. The built-in phone sensors

was used for collecting accelerometer and gyroscope data.

However, collecting accelerometer and gyroscope data is not

always feasible. To expand the scope of research and increase

the number of test drivers, this work aims to calculate synthetic

accelerometer and gyroscope data based on GPS. This method

allows for a broader study and facilitates the inclusion of more

test drivers, even when specific sensor data is unavailable.

Accelerometer data measures the vehicle’s acceleration

along three perpendicular axes (x, y, and z). It provides

information on the vehicle’s speed changes and direction

of movement. Gyroscope data, on the other hand, measures

the angular velocity around these three axes. It captures the

vehicle’s rotational movements, helping to understand the

orientation and maneuvering of the vehicle. Together, these

data provide a comprehensive view of the vehicle’s dynamics

and the driver’s behavior. With accelerometer and gyroscope

data, it is possible to construct the movement trajectory and

determine whether a maneuver is aggressive.

This paper describes a method that allows for the calculation

of accelerometer and gyroscope data based on GPS data.

It also outlines techniques for visualizing and validating the

obtained values. The implemented method is available as open-

source https://github.com/shushkova/gps2gyro.

The rest of the paper is organized as follows. Section 2

provides an overview of existing approaches to processing

GPS, accelerometer, and gyroscope data. Section 3 describes

the proposed method for converting GPS data into gyroscope

and accelerometer data, outlines the data visualization method,

and presents the methodology for testing the obtained results.

In Section 4, the methodology from the previous section is

applied to a real dataset. Section 5 summarizes the results,

discusses future directions, and outlines limitations.

II. RELATED WORK

This section describes the data from GPS, gyroscope, and

accelerometer sensors, and their applications in driver behavior

detection systems. It also reviews existing methods for con-

verting accelerometer and gyroscope data.
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A. Driver behavior monitoring systems
Detecting driver behavior is a popular task today. Authors

approach this problem in various ways and propose differ-

ent algorithms to enhance road safety. One of the existing

approaches is the use of GPS, accelerometer, and gyroscope

data to detect anomalies in driver behavior.
There are two types of gyroscope: mechanical and electrical.

In the context of analyzing vehicle motion, particularly with

smartphones, data from electrical devices are used. Mechan-

ical gyroscopes have a fixed z-axis pointing north, while

electrical devices have built-in axes that can be oriented in

different ways. Smartphones, often used in cars, provide a

convenient platform due to their embedded sensors, such as

accelerometers and gyroscopes, which provide valuable data

for monitoring and analyzing driver behavior.
In the paper [7], the authors calculate the Trajectory Ag-

gressiveness Indicator (TAI) based on GPS data to identify

aggressive driving behavior. This indicator ranges from 0 (no

aggressive behavior) to 100 (extremely aggressive behavior).

To improve accuracy, additional factors such as weather and

road conditions are also considered in the calculation of this

indicator.
Another study [8] classifies driving styles for public trans-

port. The authors propose a pattern recognition approach to

automatically classify driving styles without expert evaluation,

utilizing accelerometer data from repeated routes driven in

different styles. By employing statistical features of 3-axis

accelerometer signals as classifier inputs, the study achieved

100% precision in distinguishing between aggressive and

normal driving styles on the same route.
Authors of the paper [9] also utilize accelerometer and

gyroscope data embedded in mobile devices to detect the type

of maneuver being performed. Based on accelerometer and

gyroscope data, the start and end points of driving events

are identified. Then, the accelerometer and gyroscope data

during the maneuver are compared with reference values for

various maneuvers to determine the type of maneuver being

performed.
To address the issue of driver identification and verifi-

cation in car-sharing services, the authors of [10] utilize

accelerometer data. The paper proposes a recurrent neural

network architecture. The results achieved by the authors are

comparable to those in studies that use not only accelerometer

data but also gyroscope and magnetometer data for similar

tasks [11].
Another way to use GPS, accelerometer, and gyroscope data

is proposed in [12]. In this research, the authors create a new

system for real-time road quality estimation. To reduce noise

in the accelerometer and gyroscope data, they use a Low-

Pass Filter, which effectively removes high-frequency noise

by applying a suitable threshold to the filtered signal. As a

result, they developed a classifier that predicts road quality

based on this data. GPS data is used for path visualization.
To sum up, the reviewed approaches underscore the effec-

tiveness of leveraging sensor data, such as GPS, accelerometer,

and gyroscope information, for detecting and analyzing driver

behavior. These methods, including calculation of aggressive-

ness scores, classification of driving styles, and identification

of maneuvers, highlight the potential for the developing driver

monitoring systems.

B. Approaches to accelerometer and gyroscope data transfor-
mation

Gyroscope and accelerometer data are often used to solve

human activity classification tasks. To work with data from

accelerometer and gyroscope sensors, the authors of the

work apply various transformations. The authors [13] propose

a descriptor-based approach for activity classification using

smartphone sensors, employing features such as histograms

of gradients and Fourier descriptors. Their method achieves

97.12% accuracy on the UCI HAR dataset and 96.83% on a

physical activity sensor dataset, outperforming existing meth-

ods that achieve 96.33

The authors of [14] address the task of classifying hu-

man activities (walking, running, ascending, and descending

stairs) using accelerometer and gyroscope data. Based on data

obtained from mobile devices, the authors build a classifier

to determine the type of activity. This work addresses the

problem of the unknown position of the mobile device during

activity, which consequently leads to difficulties in identifying

the axes of the built-in sensors. The authors use Euler angles

to rotate to a reference coordinate system. As a result, the

accuracy of the prediction system increases by 17%.

In the article [15], an algorithm for generating gyroscope

and accelerometer data based on GPS data is described. The

author uses quaternions to calculate the angle of rotation of

the aircraft and subsequently determine the gyroscope data.

A limitation of this article is the synthetic nature of the data.

The data is manually generated, with the z-axis oriented to

the north, and the data does not contain any gaps, appearing

regularly at a fixed time intervals.

Another approach to processing accelerometer and gyro-

scope data is proposed in [16]. The article discusses a method

for improving the accuracy of data obtained from MEMS

IMUs. The authors dynamically select the most accurate data

with minimal systematic errors, instead of using the traditional

Bayesian approach, which combines all data. The proposed

Best Axes Composition (BAC) method discards the remaining

data, thereby improving trajectory estimation accuracy. The

authors extend this approach by adding BAC for accelerom-

eters to the previously developed BAC for gyroscopes and

demonstrate that both methods enhance accuracy over different

time intervals compared to traditional methods of averaging

data from multiple IMUs.

The research [17] addresses the problem of driver identi-

fication based on data obtained from mobile phone sensors.

To increase the volume of input data from accelerometers and

gyroscopes, the authors propose using a Generative Adversar-

ial Network (GAN). To improve the quality of the generated

data, the authors suggest applying Discrete Wavelet Transform

(DWT) before feeding the data into the neural network for
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Fig. 1. Gyroscope data calculation based on GPS data

training. As a result of these transformations, precision reaches

98%, and recall is 97%.

Many studies use GPS, accelerometer, and gyroscope data

to detect driver behavior, analyze road conditions, and assess

human activity. Typically, these researches focus on trans-

forming GPS, gyroscope, and accelerometer data to address

specific tasks, employing various methods such as additional

filtering, augmentation, and transformation. However, collect-

ing accelerometer and gyroscope data is not always possible.

This research proposes an algorithm for solving the reverse

problem: estimating accelerometer and gyroscope data based

on GPS sensors. The developed method can expand training

datasets in several studies, providing practical benefits for

improving existing results.

III. METHODOLOGY

In this study, the task of calculating accelerometer and

gyroscope data based on GPS sensor data is addressed.

Accelerometer data contains information about acceleration,

while gyroscope data reflects angular velocity.

A. Data preprocessing

The input data used in this study is collected through sensors

embedded in Nvidia Jetson Nano devices. The data includes

latitude and longitude coordinates. Ideally, new records ap-

peared at a frequency of 0.1 seconds. However, gaps often exist

in the data, so interpolation is necessary to create a smooth

trajectory and achieve a record frequency of 0.1 seconds.

Missing values for latitude, longitude, and speed are filled

using linear interpolation.

B. Gyroscope data calculation

We propose our method for synthetic gyroscope data simu-

lation based on GPS (see Fig. 1).

As input, we use latitude and longitude data from the GPS

sensor. The first step of the proposed method is to obtain the

coordinates in a local coordinate system, where the x and y

axes are tangent to the Earth’s surface at the origin point of the

path, and the z axis is perpendicular to the surface. Conversion

to the local coordinate system is necessary to measure linear

velocity in meters per second and to obtain angular velocity

data. The limitation of the global coordinate system is the

difficulty in applying formulas for calculating angular and

linear velocities.

The following section applies all formulas to three-

dimensional orthogonal systems. It is important to note that

the local coordinate systems constructed by the above method

for the initial point and any subsequent point do not coincide,

as the tangent directions differ at various points on the Earth.

However, given that the Earth’s radius is much larger than the

distances of the routes under consideration, we can analyze

the route in the local coordinate system of the initial point.

In our system, the z-coordinate is directed perpendicular to

the Earth’s surface and corresponds to the altitude above sea

level. However, the elevation change data in our task has an

accuracy of 1 meter, which is not precise enough to account for

minor changes. Furthermore, for the task of detecting the type

of maneuver, changes in the z-coordinate are not significant,

so these changes are neglected.

Thus, to convert GPS coordinates to a local coordinate

system, it is necessary to calculate the x and y coordinates

of each point relative to the initial point. Figure 2 illustrates

the logic of calculating the coordinates in the local coordinate

system of point 2 with respect to point 1 (Points 1 and 2 are

obtained using GPS). To achieve this, we take the latitude of

point 2 and the longitude of point 1. These are the coordinates

of point P. Therefore, the distance between point P and point 2

represents the x-coordinate, while the distance between point

P and point 1 represents the y-coordinate.

The distance between GPS points will be understood as

coordinates in the local coordinate system. The following

formula is used to calculate the distance between GPS points:

A = sin2
(
lat2 − lat1

2

)
,

B = cos(lat2) · cos(lat1) · sin2
(
lon2 − lon1

2

)
,

φ = 2arcsin
(√

A+B
)
,

where lat2, lat1 are values of latitude in radians, lon2, lon1

are values of longitude in radians.
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Fig. 2. The logic of calculating coordinates in the local coordinate system

To convert to linear distance the following formula is used:

L = φ× 6367000 (where 6367000 m is the Earth’s radius)

Thus, a set of coordinates is obtained, based on which it is

necessary to construct vectors. Each component of the vector

is a value in meters, corresponding to the distance traveled at

a given moment in time.

Next, it is necessary to calculate the rotation angles of each

vector with respect to the previous vector. To determine the

angles, the vectors are normalized, since only the rotation

angles are needed.

To determine the gyroscope data, the angles of rotation

at each moment around each axis, i.e., the Euler angles,

have to be determined. These angles can be calculated using

quaternions. A quaternion describes the rotation of a vector

from one position to another by specifying the axis around

which to rotate the vector and the angle of rotation. Next, the

method for calculating the quaternion for two vectors will be

described.

In Figure 3, two consecutive vectors u1 and v1 are shown.

These vectors are constructed from the initial points of the

path. The angle of rotation from u1 to v1 is considered the

clockwise rotation angle and is highlighted in red.

The quaternion for this rotation is constructed based on

the axis of rotation, which is obtained by the cross product

of u1 and v1 (vector = u1 × v1), and the angle be-

tween the vectors , determined by the formula: angle =
arccos(vector u1 ∗ vector v1). Before creating a quaternion

for a vector, it is necessary to normalize the vector. With the

axis and the angle, we get the following quaternion:

Fig. 3. Rotation angle between vectors

qw = cos

(
angle

2

)
,

qx = vx · sin
(
angle

2

)
,

qy = vy · sin
(
angle

2

)
,

qz = vz · sin
(
angle

2

)
.

Then the Euler-Krylov angles are calculated:

bank = arctan

(
2 (qw · qx + qy · qz)
1− 2 (q2z + q2x)

)
,

altitude = arcsin (2 (qw · qy − qz · qx)) ,

heading = arctan

(
2 (qw · qz + qx · qy)
1− 2

(
q2y + q2z

)
)
.

Thus, the angles in radians of rotation around three axes

are obtained when moving from point 1 to point 2. Then,

similar actions should be repeated for the following vectors.

However, it should be taken into account that after the first

rotation, the local coordinate system has changed relative to

the initial one. Therefore, it is necessary to rotate the vectors

back to work in the initial coordinate system. To do this, the

resulting quaternion is constructed, which represents the total

rotation at the current time. To get the resulting rotation back

the following formula is used:

quat rotatedw = qw,

quat rotatedx = −qx,

quat rotatedy = −qy,

quat rotatedz = −qz.

In order to apply the inverse quaternion for the vectors, it

is necessary to obtain product of two quaternions q1 and q2:

qw = q1.w · q2.w − q1.x · q2.x− q1.y · q2.y − q1.z · q2.z,
qx = q1.w · q2.x+ q1.x · q2.w + q1.y · q2.z − q1.z · q2.y,
qy = q1.w · q2.y − q1.x · q2.z + q1.y · q2.w + q1.z · q2.x,
qz = q1.w · q2.z + q1.x · q2.y − q1.y · q2.x+ q1.z · q2.w.
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Next, apply the inverse quaternion to the vector v. Create a

quaternion vq from the vector v:

t = q ⊗ vq,

r = t⊗ quat rotated.

These actions are applied sequentially for all pairs of

vectors. Thus, an array of rotation angles along three axes

is formed.

To show an example we illustrated the algorithm with a

synthetic example on a two-dimensional plane (for the case

when a driver makes a turn). There is a set of points in

the figure: A(0, 0, 0), B(1, 0, 0), C(1, 1.5, 0), D(1.5, 2.5, 0),
E(2.5, 3.5, 0), F (4, 2.5, 0), G(5, 1.5, 0), H(6, 0, 0). From this

set of points, we obtain a set of displacement vectors for

each moment in time, where each component of the vector

represents the distance traveled at that moment. We obtain

the set of vectors: a = (0, 1, 0), b = (1, 0.5, 0), c =
(0.5, 1, 0), d = (1, 1, 0), e = (1.5,−1, 0), f = (1,−1, 0),
g = (1,−1.5, 0). Next, we need to create quaternions for the

first two vectors, assuming the z coordinate is zero. The angle

between the vectors is found through the scalar product. The

following quaternion is obtained:

(w, x, y, z) = (0.8507, 0.0, 0.0,−0.5257)

Next, the Krylov-Euler angles are found using the formula

mentioned above: (0.0, 0.0,−63.4349). After this, it is neces-

sary to perform the inverse rotation of vectors b and c to return

to working in the initial coordinate system. We calculate the

inverse quaternion of the total rotation at the current moment

(in this case, (w : 0.8507, x : 0.0, y : 0.0, z : −0.5257)).
The inverse quaternion is:

(w, x, y, z) = (0.8507, 0.0, 0.0, 0.5257)

Now we multiply vectors b and c by the inverse quaternion

to return to the initial coordinate system. Vector b now has

the following coordinates: (x : 0, y : 1.0, z : 0.0). Vector

c has the coordinates: (x : −0.6708, y : 0.8944, z : 0.0).
The quaternion for vectors b and c is (w : 0.9486, x : 0.0, y :
0.0, z : 0.3162). Therefore, the resulting rotation quaternion is

(w : 0.9732, x : 0.0, y : 0.0, z : −0.2298).
Further, similar steps are performed iteratively. As a result,

the angles of rotation for all initial vectors are obtained as

shown in Fig. 5

C. Accelerometer data calculation

To find the accelerometer data, it is necessary to determine

the speed based on the coordinates. Acceleration is calculated

as the change in speed over unit time. This requires the use

of coordinates obtained by converting GPS data into the local

coordinate system. The following formulas are used:

Vx =
Δx

Δt
; Vy =

Δy

Δt
; Vz =

Δz

Δt

ax =
ΔVx

Δt
; ay =

ΔVy

Δt
; az =

ΔVz

Δt

D. Visualization of the obtained values

To visualize the values, it is necessary to plot the obtained

trajectory using the gyroscope and acceleration data. We

propose the following algorithm for plotting the trajectory:

Set the initial synthetic vector to (1, 0, 0). Since angular

velocity is measured in degrees per second, multiply the given

values by 0.1 seconds to obtain the rotation angles in degrees.

Rotate the current normalized vector by these angles to get

the new vector. Note that for validation, instead of using the

synthetic vector (1, 0, 0), a vector constructed from the first

two GPS points is used. This is necessary to set the correct

direction for future turns; otherwise, the trajectory would be

rotated relative to the actual path.

Fig. 4. The Pipeline Visualization

Next, determine the length of the new vector. This length

represents the linear velocity. Multiply each component of the

vector by the velocities and divide by the L2 norm of the

vector.

E. Validation of the obtained values

To evaluate the accuracy of the proposed method for gen-

erating accelerometer and gyroscope data based on GPS data,

it is necessary to compare the trajectories constructed from

the original GPS data with those obtained from the calculated

accelerometer and gyroscope values. The Fréchet distance

metric [18] will be used for this purpose.

The Fréchet distance between two curves P and Q is defined

as:

δF (P,Q) = inf
α,β

max
t∈[0,1]

‖P (α(t))−Q(β(t))‖,

where:

• P and Q are the parameterizations of the two trajectories.

• α(t) and β(t) are continuous, non-decreasing functions

mapping the interval [0, 1] to the domain of the trajecto-

ries.
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• ‖ ·‖ represents the Euclidean distance between the points

P (α(t)) and Q(β(t)) on the two trajectories.

Fig. 5. The angles of rotation for all vectors

IV. RESULTS

The method described above has been implemented using

Python 3.10. For testing we used the following [19] dataset,

which contains information about drivers’ trips. The text

files contain GPS sensor output with a frequency of 3-6

measurements per second. Each file describes the movement

over a 20-second period during which a road maneuver was

performed.For the test, maneuvers performed by two drivers

were used, with a total of 5700 trips of 20 seconds each

considered.

Performing the mentioned method, firstly, all GPS coordi-

nates were converted to coordinates in a local system with

units in meters. Then, we calculated the accelerometer data

based on the available GPS data. As a result, speed and

acceleration were obtained for each moment in time with a

granularity of meters per second.

Next, to compute the gyroscope data, the obtained coor-

dinates were converted to vectors and then transformed into

quaternions. Based on these quaternions, Euler angles were

derived. Using these rotation angles, angular velocities at each

moment in time, i.e., gyroscope data, can be computed.

Then, for each trip, two trajectories were constructed: one

based on the computed speed and gyroscope values from the

implemented method, and the other based on latitude and

longitude from the GPS data. To simplify the validation of the

two trajectories, the starting vector for trajectory construction

is taken from the vector constructed from the first two points

of the actual trajectory. Otherwise, the computed trajectory

might be rotated relative to the actual trajectory (see, Fig. 6 -

Fig. 11 for different maneuvers).

The maximum length of a single route over the 20-second

period is 791 meters, while the minimum length is 2 meters.

The average route length is 182 meters. To determine how

similar the trajectories of the drivers are, we calculated the

Fréchet distance for each pair of trajectories. The average

Fréchet distance across all drivers and trips was 5.4 meters.

This means that, on average, the trajectories of two drivers

are within 5.4 meters of each other. Additionally, for each 20-

second segment, a relative metric was calculated as the ratio

of the Fréchet distance to the traveled distance. The average

value of this metric was 3% across all examined segments and

drivers.

For visual interpretation of the results, the actual trajectory

was plotted on maps (see, Figs. 7, 9, and 11). The map shows

the actual trajectory based on the GPS data. The graphs on

the left depict the trajectory calculated using the algorithm,

while the graphs on the right show the actual trajectory in

meters. As can be seen, the obtained trajectories match in

both considered cases, which, together with the small value of

the Fréchet distance, clearly demonstrates the correctness and

effectiveness of the algorithm.

Fig. 6. Real Trajectory on Map: Trip 1

Fig. 7. Calculated and real trajectories in meters: Trip 1

Next, we applied a maneuver type classifier from our pre-

vious work [5]. As a result, each maneuver was classified into

one of six types: aggressive deceleration, aggressive accelera-
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Fig. 8. Real Trajectory on Map: Trip 2

Fig. 9. Calculated and real trajectories in meters: Trip 2

tion, non-aggressive event, aggressive turn left, aggressive turn

right, and no maneuver. Table I presents the Fréchet distance

values by maneuver type. The metric values for different

types of maneuvers differ by no more than 1.5 meters. From

experiments we conclude that there is no correlation between

the maneuver type and the proposed method accuracy. The

algorithm returns a similar error across all maneuver types.

TABLE I
FRÉCHET DISTANCE FOR DIFFERENT MANEUVER TYPES

Maneuver type Fréchet distance
aggressive deceleration 4.12
aggressive accelerations 5.29

non-aggressive event 5.74
aggressive turn left 6.03

aggressive turn right 5.47
no maneuver 6.35

The implemented method demonstrated high accuracy in

calculating accelerometer and gyroscope data based on GPS

data. The comparison of the constructed trajectories with the

Fig. 10. Real Trajectory on Map: Trip 3

Fig. 11. Calculated and real trajectories in meters: Trip 3

actual GPS data showed significant alignment across various

types of road maneuvers. This is confirmed by the low Fréchet

distance between the trajectories, indicating a high degree of

precision in the proposed method. Therefore, the algorithm

successfully addresses the task of motion reconstruction based

on limited data, demonstrating its potential applicability in

various tasks related to the analysis and monitoring of road

maneuvers.

V. CONCLUSION

In this work, a method was developed and implemented

synthetic accelerometer and gyroscope data based on GPS

sensors. The method includes constructing quaternions to

represent rotations, which are then converted into Krylov-Euler

angles. The approach has been validated and visualized, and

the results are accessible as open-source.

Experiments showed that the Fréchet distance is 5.4 meters

across all the data used for testing, which is on average 3%

of the trip length. It was also established that the proposed
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algorithm maintains its accuracy depending on the type of

maneuver performed.
In the future, this opens opportunities for further research

in driver behavior analysis using datasets that do not contain

the necessary information.
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