
_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 136 __________________________________

SystemC and SDL Co-Modelling Methods

Alexander Stepanov, Irina Lavrovskaya, Valentin Olenev, Alexey Rabin

St. Petersburg State University of Aerospace Instrumentation
190000, 67, Bolshaya Morskaya, St. Petersburg, Russia

Alexander.Stepanov@guap.ru, Irina.Lavrovskaya@guap.ru, Valentin.Olenev@guap.ru,
Alexey.Rabin@guap.ru

Abstract

This paper gives an overview of three possible, from authors’ viewpoint, co-modelling methods of SDL
and SystemC. The first method assumes to insert SystemC into a SDL model by including of the C header
files into the SDL model. The second method is an insertion of SDL into SystemC by “teaching” of the SDL
model how to process requests and commands of the SystemC model. The third method assumes to run SDL
and SystemC independently in operating environments using a specific tool with SDL and SystemC
interfaces. Also in this paper we compare these approaches marking out their advantages and disadvantages.

Index Terms: SystemC, SDL, Co-Modelling.

I. INTRODUCTION

There are two widely used languages applicable for modelling, they are SDL and SystemC.
These languages are much different and also they give different abilities for developers and
have various benefits. SDL language is adopted for visible demonstration of interactions
between modules. As for SystemC, it is more suitable to trace internal functions of the
modules [1].

SDL and SystemC are separately used but is there any chance to use these two languages
together and what benefits it will give? If a joint use is possible, will it give an ability to use
both modules interactions and internal operations simulation at the same time? In present
paper answers on these and similar questions are given.

According to our point of view, there are three ways of SystemC and SDL co-modelling in
one communication system:

insertion of SystemC into SDL (into the SDL Tool);

insertion of SDL into SystemC (by compiling SDL to C code);

independent use of SDL and SystemC by the instrumentality of a specific tool with SDL
and SystemC interfaces.

II. MAIN PART

A. Insertion of SystemC into SDL
Let’s consider the first method of SystemC and SDL co-modelling. It is a question about

SystemC insertion into SDL. SDL can understand C code by means of the Telelogic SDL
Tool [2]. So an SDL/SystemC models integration could be broken into a number of stages:

� writing a SDL model;

� writing a SystemC model;

_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 137 __________________________________

� writing a SystemC channel;

� writing an SDL interlayer;

� writing a patch to convert SDL data types to C types;

� writing a pure C code to a *.h file which will be an implementation of interface between
interlayer and channel;

� include this *.h file in the SDL interlayer;

� include this *.h file in the SystemC channel.

Such kind of route is depicted on the Figure 1:

SDL Model
(runs in Telelogic tool)

SDL Interlayer
(type converter,

C interface)

SystemC Model
SDL data

SystemC channel

C data SystemC data

Master Slave

Figure 1. Insertion of SystemC into SDL route (SystemC→SDL)

This method can have some implementation restrictions. First, SDL could execute a *.h
file written only in pure C, so use of classes, inheritance and other features of C++ and
SystemC imposes difficulties. But even in this case SDL data types can not be easily
converted to C types. For joint use of two languages kind of “type converter” should be
implemented. This converter should be able to convert arrays, structures and signals into
corresponding C types. These points make use of additional C and C++ libraries (e.g.
SystemC) for SDL difficult. But it is still possible to implement such interlayer which would
give an ability to convert data types and include SystemC.

Also such implementation would have a disadvantage related to usability. The SDL model
could be changed, but any change in a “bottom” part of the model would cause updates in the
interlayer. Also a big percent of changes in the SystemC model will cause a change in the
channel which makes method calls.

Concerned method has another difficulty. Such joint usability would give an opportunity to
see the results of the SDL operation part only. But all the SystemC side would be hidden
“from the eyes of the developer”. So the SystemC and C parts debug becomes very difficult.

In addition, this method has a number of benefits. It is convenient to organize the SystemC
and SDL interaction and it is the easiest way to implement the joint use of these languages.
Also here the SystemC model is used as a library, so all the function calls are performed by
the SDL model. This way simplifies SDL/SystemC synchronization problems. But in that
case the SystemC model should be event oriented.

Also this method gives an ability to use the SDL Simulator, because the SDL model will
be a master. Hereby we can view all interactions in the SDL model.

_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 138 __________________________________

B. Insertion of SDL into SystemC
Let’s turn to the second method of SDL and SystemC joint use. It is insertion of SDL into

SystemC. There is an ability to create pure C code on the basis of a SDL model in the
Telelogic SDL Tool. So the integration of the SDL model into the SystemC model is divided
into following stages:

• writing a SDL model;

• generation of pure C code from the SDL model;

• writing a SystemC model;

• writing a SystemC channel;

• writing a C++ interface between C analogue of the SDL model and the SystemC
channel.

Such kind of route is shown on the Figure 2:

SDL Model

Compiled C file SystemC Model
(runs in MSVC)

“make” (compilation)

SystemC channel

C data SystemC data

C++ interface to a
SystemC Channel

C data

MasterSlave

Figure 2. Insertion of SDL into SystemC route (SDL→SystemC)

In this method the SystemC model is a master and the SDL model is a slave. So the
SystemC model would run on C++ compiler and this model will interact with C analogue of
the SDL model by means of the SystemC channel.

This method has several disadvantages. First thing to mention is that by use of the given
method it is impossible to work with the SDL Simulator. As a result it is impossible to make
changes in the SDL model itself and to trace interactions between modules. Another point is
that it is necessary to create a C++ interface for connection of the C analogue of the SDL
model and the SystemC channel. Also such implementation causes changing of the SDL
model and generation of а new C code each time when it is needed to change a testing model.

In addition, this way of co-modelling has a number of advantages. As the SystemC model
is a master, so it is possible to work with code of the SystemC model. It means that we can
perform a step by step model debugging. Moreover, such structure of co-modelling gives a
possibility to use a SystemC clocking. And finally, it should be pointed out that this method
allows working with C code only on the “SDL side”.

_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 139 __________________________________

C. SDL and SystemC independent use
And the last method to discuss in this paper is use of SDL and SystemC independently by

passing the results through a file. Writing results to a file and reading them depend on clocks.
This method consists of several steps:

• writing a SDL model;

• writing a SystemC model;

• creation of a file for connection of two models;

• writing a tool with interface for managing of both models.

Such kind of route is presented on the Figure 3:

SDL Model

File with results or data

SystemC Model

Tool with interface and
managing possibility

data

data

managing

managing

result

Figure 3. Use of SDL and SystemC independently (SDL / SystemC)

A special tool for managing SDL and SystemC models would be a master. This tool would
handle point-to-point work of two SDL/SystemC systems and would give all information
about interactions between both models. It should be mentioned that each model would have
its own clocks.

This method has several advantages in comparison with ways discussed above. First of all,
both models functionality could be fully observed. So there is a possibility to combine
benefits of SystemC and SDL languages. Another point is that both models would work
independently from each other, so that changes in one model wouldn’t have an influence on
the work of the whole system. Monitoring of transmitted through the channel data is
simplified by an implementation of the management tool.

However this method has some restrictions. Multiple accesses to the file from both models
and management tool can cause implementation difficulties. The management of models
functionality by the tool is still a good question for research because SystemC and SDL
models have various access and management mechanisms.

III. CONCLUSION

We considered three methods of SystemC/SDL co-modelling. Each of them has distinct
features as it is described in Table 1.

_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 140 __________________________________

Table 1. Specific features of SystemC and SDL co-modelling methods
Feature SystemC → SDL SDL → SystemC SDL / SystemC

Master/slave SDL is master,

SystemC is slave

SystemC is master,

SDL is slave

No explicit master

Clocking SDL clocking SystemC clocking Independent clocks

Resource costs SDL Tool is running C++ compiler is running SDL Tool, C++ compiler
and a management tool
are running at the same
time

Visibility Only SDL interactions
are visible

Only SystemC
interactions are visible

Both models functionality
processes are visible

Examined approaches are pretty various, but applicability of each of them depends on
compatibility of features to developers requirements.

ACKNOWLEDGMENT

The authors would like to thank Finnish-Russian University Cooperation in
Telecommunications (FRUCT) program [3] for support of the related R&D activities, Nokia’s
and NSN university collaboration programs in Russia for supporting FRUCT community and
all FRUCT experts for commenting and reviewing the paper.

REFERENCES

[1] A. Stepanov, V. Olenev, A. Rabin. Comparison of SDL and SystemC Languages applicability for the
protocol stack modelling // The annual scientific conference of SUAI students. Proceedings / St.
Petersburg: SUAI, 2009 (in Russian).

[2] SDL and TTCN Suite 6.1. SDL Suite and TTCN Suite Help, http://www-
01.ibm.com/software/awdtools/sdlsuite/

[3] Official webpage of Finnish-Russian University Cooperation in Telecommunications (FRUCT) program,
http://www.fruct.org.

