
_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 53 __________________________________

Introducing UMSIC Middleware Services

Jussi Laakkonen, Tommi Kallonen, Kari Heikkinen, Jari Porras

Lappeenranta University of Technology
P.O. Box 20

53851 Lappeenranta, Finland
firstname . lastname @ lut.fi

Abstract
Service orientation is an acknowledged approach for its capability to abstracting computing from the

underlying hardware and software layers. Furthermore, service orientation can also be seen as dominant
paradigm for application development. As future networks are required to behave in a dynamic manner,
sufficient coordination at abstract level of middleware deployments is required. Peer-to-Peer networking
has shown capability in absorbing service orientation and dynamic behavior. In this paper, services for
Peer-to-Peer networking in UMSIC project are introduced.

Index Terms: middleware, service, UMSIC, application development, PeerHood, Peer-to-Peer.
I. INTRODUCTION

Middleware technologies are becoming increasingly important in distributed computing
systems. Middleware is defined as the software layer that lies between the operating system
and the applications. For networked applications, new knowledge is needed e.g. to enable
application-optimized communication technologies, and generic abstraction of middleware
that shall dynamically react on changes of the network environment by adapting the chosen
settings and protocols to application needs, thereby significantly improving usability and
deployment. Issarny et al. [1] show that especially in complex software systems, middleware
has proven capable to deal with the ever increasing complexity of distributed systems in a
reusable way. Attractive features of middleware have made it a powerful tool in the software
system development practice. Hence, middleware can be seen as enabler for creation of
methods and related tools for middleware-based software engineering. The development of
middleware-based software systems can select applicable Software Engineering (SE) methods
and tools, e.g. Service oriented middleware. The evolution of component based programming
is going towards the service orientation paradigm that supports the development of distributed
software systems in terms of loosely coupled networked services.

The dynamic execution in the future networking environment is continuously increasing
and requires coordination with nodes that are in a likelihood unknown during very short time
period. In addition adequate coordination at abstract level need to be available to application
developers by middleware provision of corresponding overlay network or application. One of
the promising approaches is peer-to-peer networking [1].

This paper introduces our own existing implementation of Peer-to-Peer network, PeerHood
[2] in Chapter II and the UMSIC project, including the usage scenarios is described in brief in
Chapter III. In Chapter IV the reasons for using Peer-to-Peer and service oriented approach
for the UMSIC project application is presented. In the same chapter the services provided by
the UMSIC middleware are introduced including the hierarchical structure of services. In the
final chapter, Chapter V the main content of this paper is gathered.

_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 54 __________________________________

II. PEERHOOD

PeerHood [2] is an implementation of Peer-to-Peer neighborhood and communications
concept in mobile environment which enables proactive discovery of devices and their
services from neighborhood whilst providing means for communication. PeerHood is targeted
to Personal Trusted Devices (PTD) and it is designed to be a transparent networking module
in between the network layer and the applications.

PeerHood consists of daemon, plug-ins and library for application as shown in Figure 1.
PeerHood daemon performs the main operations of PeerHood and runs as a background
application. PeerHood daemon communicates with application and plugins via socket
connection. Different plug-ins are implemented to support different network technologies,
these plug-ins are dynamically loadable modules and can be used by other PeerHood
components. Currently there are network plug-ins for Bluetooth, WLAN (Wireless Local
Area Network) and GPRS (General Packet Radio Service). The PeerHood library is provided
for applications to use. It is the interface to be used when interacting with PeerHood daemon
and it also provides a common interface for several wireless technologies.

Figure 2. PeerHood components

 PeerHood offers following functionalities:

� Device discovery

� Service discovery

� Device monitoring

� Service advertising

� Connectivity between PeerHood enabled devices and services

_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 55 __________________________________

� Data transfer between PeerHood enabled devices

� Seamless connectivity

The process of service discovery in PeerHood is a two way operation [3]. First the
information about nearby device is requested by the PeerHood daemon which contains the
information of the device, its services, network techniques available and a list of neighboring
devices. After this the application using PeerHood can get the list of services from daemon
and use preferred service if found. The actual device and service discovery is specific for each
networking technology that is used.

III. THE UMSIC PROJECT

UMSIC [4] is a FP7 project funded by EU, purpose of the project is to improve inclusion
and reduce isolation in groups of children, especially where children have attention
deficiencies or whose language is different from that of the host country. These goals of this
project are going to be achieved through musical activities [5] which are enabled by using
modern, mobile technology for creation of musical material in different social contexts. The
social contexts include the usage of the application alone, with pair, small and large groups in
school or on free time, including communication and collaboration via Internet. As
application is used in learning situations in school class methods for controlling, monitoring
and helping a child are provided for teacher or other authoritative person to use.

A. The product of the project
The product of the project, JamMo (Jamming Mobile) application, answers the challenges

and requirements with the help of UMSIC middleware [6]. The UMSIC middleware contains
means for secure communication with the help of PeerHood in service oriented manner and
provides features for manipulating musical material, i.e. create, modify, share etc. JamMo
application relies on top of the middleware utilizing functions provided. The UMSIC project
relies on a mobile interactive product – the JamMo that provides a networked music making
environment for children aged from 3 to 12 years. It is being designed for the Nokia Maemo
devices, e.g. N900 [7], which provides a high resolution touch screen display (800 x 480
pixels) in a compact size and a stereo audio. Underlying Linux operating system (Maemo)
enables the use of innovative and high-quality open source components, such as Clutter [8]
for hardware accelerated graphics and GStreamer [9] for media-handling. The implementation
of the JamMo software follows open source software development (OSSD) principles and is
open for third-party extensions. JamMo is licenced under GPL (Gnu General Public Licece).

B. UMSIC scenarios
JamMo product with UMSIC middleware will be used in several different usage scenarios

[5]. The scenarios and the functionalities needed differ in the user groups. In most cases
JamMo will be used in classroom environment, but the usage outside school is also supported.
The designed users of JamMo range from 3 to 12 in age. The scenarios for younger users are
simple and the offered functionalities increases as the age of the users increases.

Stand-alone: Singing and composition games of 3-6-year-old children
The singing game is a simple karaoke application where a child can select a song and the

sing along. The singing will be recorded and it can be listened later on. The song can also be
sent to teacher. In the composition game child begins by selecting a theme from available
possibilities. Each theme has a different look and different musical elements available. The
composition happens by adding sound loops to a musical track. There are two tracks; a
backing track, which can´t be edited and a track where the loops can be added. On the user

_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 56 __________________________________

interface the loops are presented by different symbols fitting to the theme. The child can listen
to the song that was created at any time with or without the backing track. The child can add,
remove or move the sound loops to different parts of the track. After the song is finished it
can be listened as whole and it will be saved to songbank on the device. The song can also be
sent to teacher if the composition happened in a classroom.

Ad hoc: Composition pair game of 3-6 year-old children
The pair game is a extension to previously presented stand-alone composition game for 3-

6-year-old children. The main difference here is that now the players are working as a pair to
create a song. Before they start composing they have to select a theme just like before, but
now they also have to select a pair (or a pair can be given by teacher). During the composition
they now have three tracks in a song, one backing track and one track for each player. Both
can add sound loops to their own tracks, edit the tracks and listen to track or song
independently. Information about all of their track edits (places of the loops) are transmitted
in real-time to their pair, so both can see and listen what the other is doing. After the
composition has finished, the song is saved on both devices and can also be sent to teacher.

Public: Inclusive music classroom of 7-12 year-old children
In public scenarios the use of JamMo happens in a classroom where a teacher has a

computer with desktop version of JamMo and a video projector to present song creation,
playing or group works on a public screen. The children can work in groups up to four
persons to create songs. They can create more complex songs than younger ones by editing up
to six tracks. They can add sound loops or sound created with virtual instruments to editable
tracks. Additionally children can use own samples (probes) they've recorded with the devices
but only after the sample has been verified by higher authority to prevent possible misuse.
The changes are updated to other members of the group in real-time. The teacher can monitor
and control the activities of different groups from his/her computer.

The work in public scenario can also happen in the form of a chain, where one child
creates a part of a song and sends it to next (pre defined or randomly selected) who continues.
This way to song travels in a chain where each child adds a new part to a song until they all
have participated and the song is finished.

Networked: Informal on-line community of 10-12-year old children
The networked scenarios are meant for older children and for non-real-time collaboration.

The children can share musical material through on-line community, where they can also
create workshops. They work basically as group composition for 7-9 year-old children, the
difference is that updates don´t happen in real-time, the updates happen through server when
the user logs in. This way the work is informal without the need for teacher participation.

IV. UMSIC MIDDLEWARE AND SERVICES

The usage scenarios presented earlier and the goals of the project set the requirements for
UMSIC middleware. The middleware must manage all communications between devices in
Peer-to-Peer environment in a way that is transparent to end user. The middleware will take
care of actor authentication and authorization, file transfer, data transfer during real-time
collaboration etc. The use of PeerHood is beneficial since it can automate device and service
discovery and connection establishment. On top of PeerHood we propose several services
each in charge of specific tasks. In our approach the UMSIC middleware uses PeerHood to
search for other devices with UMSIC services, authenticates them and creates connections
when needed without any user input.

_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 57 __________________________________

A. UMSIC Middleware
The UMSIC middleware should operate on its own without requiring any interaction from

the user. The transparency of middleware itself and its operations are requirements in UMSIC
project [6]. Therefore the middleware used should be able to maintain itself and the
information about surrounding devices and their properties, which can be enabled by using
our existing solution, PeerHood [2].

As the users can be assumed to have limited knowledge of the technical issues concerning
the product because of their age the self maintainability of the application as a whole is an
important issue. Especially when networking is required and connections to other devices are
required to be established. Since the approach in UMSIC is to make children work together in
small groups without any centralized servers Peer-to-Peer is a natural choice for
communication and connection establishment. It is seen as a natural way to build up needed
personal seamless ubiquitous client-server connections [10]. Although there is a teacher
present in most of the scenarios and the teacher uses a server designed for monitoring and
controlling devices of children the actual group works are happening in Peer-to-Peer manner.
The teacher's server can be thought as a quiet participant in the group work and in some cases,
informal learning and chain work scenarios for instance, the devices children use are
communicating only in Peer-to-Peer manner. Especially in chain work where the composition
is forwarded to next participant when that particular participant is discovered from the
network neighborhood.

In most of the scenarios described earlier the devices are located in same small area, e.g.
classroom and therefore most of the communication is happening in some local or personal
area network. The current implementation of PeerHood [3] supports both of these network
types with the help of different networking plugins. In these kinds of networks centralized
servers are not necessarily needed [11] and with the help of Peer-to-Peer connectivity clients
can share own services and establish connections to services provided by others. PeerHood
supports both of these operations, including automatic and manual selection of services [3].
The automatic service selection simplifies the process and manual selection causes more
inconvenience. As requirements of the UMSIC project suggest [6], the service selection
should be automated or either done by the middleware at program level.

B. UMSIC services
The purpose of the services provided by the UMSIC middleware is to provide access to

software modules and their data which are located inside the middleware. With the help of
carefully planned services and service hierarchy automatized enforcing of security can be
achieved. With different services the connecting device and its user can be first checked for
validity (authenticate) and then the user can be granted an access level depending on the result
of the authentication. The access to other services, their functions and data can be then limited
by the access level. When the whole procedure is automatized at middleware level the
transparency of middleware operations can be achieved. The services are meant for other
users of JamMo to use and provide information to authoritative persons, the modules that
services are connected to exchange information internally.

The hierarchy for different services is presented in Figure 2. There are five different levels
for services (L1,L2,L3,L4 and L5), where L1 (1st level) is the highest and L4 (4th level) and
L5 (5th level) are the lowest. Idea is that first a connecting device must gain acceptance from
higher level service and only after that lower level service can be used.

_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 58 __________________________________

Figure 3. UMSIC service hierarchy

Jammo service
JamMo service is the simplest service in the UMSIC middleware. It is used to detect

running JamMo application and the version of the application. Only compatible versions are
allowed to interact.

Authentication and Authorization service
Authentication and Authorization service is the second service that is connected to. The

validity is checked by verifying authentication credentials which provide the information
about validity and type of the user. Based on this user type (there can be 3 different types,
UMSIC personnel, teacher and child, where child is the lowest) a access level will be granted
and session information is saved on the local device. If the connecting user can not be verified
the user is not allowed to use services on lower level and connection is rejected.

Profile service
Profile service will provide information about the user who is using the device. Since the

information stored on the device can be sensitive information the amount of information that
will be provided for others is based on their access levels. Users with higher access level (e.g.
teacher) have access to more information than another user who has the same access level. By
the preferences and information provided by Profile service the compatibility between users
can be checked. This includes for example checking if the users are the same age or do they
have similar hobbies. If the user is accepted access is granted to services on the 4th level.
Another purpose of the Profile service is to allow the teacher to push existing profile to the
device.

Songbank service
Songbank service is, as named, meant for accessing the songs on the device. It provides

functionality for searching for available files (songs) on the device, download a particular file
from device, get the full list of all available files and saving a file to a server. The saving of a
file to a server functionality is available only on a server machine. For transferring the actual
data generic Data transfer service is used.

_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 59 __________________________________

Probe verification service
Probe verification service is used for requesting a verification for a self recorded sample.

The service is different whether run on a client device (used by child) or on a server (used by
teacher). When run on a server this service provides means for requesting a sample to be
verified (sent by child) and on client device it provides functionality for receiving a
verification reply for some requested sample (reply sent by teacher). For the actual data
transfer generic Data transfer service is used.

Collaboration service
Collaboration service is meant for synchronizing data between group members during the

song creation process. The changes others have made are sent to every member of the group
either in real time or periodically, depending on the real time requirements of scenario where
the group work is done. Open group works (compositions) can be synchronized between users
sharing the same access level, the result, being either finished or incomplete can be saved to
server. Incomplete works are saved to server for future use in order to allow users to be able
to continue the composition afterwards. For transferring larger quantities of data Data transfer
service is used.

Group management service
Group management service is used to form communicating groups between users. It offers

functionalities to advertise a group, to join a group that was found or part from group. Users
on same level have the free will to choose their groups but users with higher privileges (e.g.
teacher) can force regular users to act as a group. Also information about current group status
is provided to other users requesting the information.

Mentor service
Mentor service is designed to provide way for higher authority (teacher) to get information

about the current activities of the user (child). Another purpose is to automatize the process
for asking for help if child gets stuck on some task. The request for help is sent to teacher
automatically by the software if the module responsible of the cognitive functions notices that
child is having problems.

Control service
Control service is meant for gaining full control of the device used by a child. This service

can be only used by persons who have higher access levels (usually the teacher). The main
usage is in classroom where teacher needs to e.g. help a child with some task or to lock the
device for some time period. The service is located only on client devices.

Data transfer service
Data transfer service is a generic service for transferring data securely between devices. It

is used for needs of other services and the direct access to this service is restricted. Other
services on 4th level must initiate the sequence for transferring data related to that particular
service. After this the transferring of data is fully handled by Data transfer service. Data
transfer service keeps track of the services which are transferring data and what is the status
and direction of the transfer.

V. CONCLUSION

In this paper UMSIC middleware services were introduced. The services provided by the
UMSIC middleware are divided to different hierarchy levels based on the responsibility and
authoritative requirements. The connected device cannot use the service unless upper level

_________________6TH SEMINAR OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

__________________________________ 60 __________________________________

has granted access to it. The services presented in this paper are derived from the UMSIC
project requirements. As the implementation phase of the project has just started it is very
likely that the specification of the middleware and affected components, including services
will evolve.

The PeerHood implementation enables a variety of services to be created on top of it, as
concepts such as seamless connectivity and discoveries can be obtained through PeerHood
functionality. One of the major technical results is the development of lightweight
middleware for complex scenario settings and use cases. The service oriented approach used
in PeerHood is suitable for the needs of UMSIC project.

ACKNOWLEDGMENT

The authors would like to thank UMSIC project.

REFERENCES
[1] V. Issarny, M. Caporuscio, N. Georgantas, A Perspective on the Future of Middleware based Software

Engineering, Proceedings of International Conference on Software Engineering, Future of Software
Engineering, pp. 244 - 258, 2007, ISBN:0769528295.

[2] Jari Porras, Petri Hiirsalmi and Ari Valtaoja, “Peer-to-Peer Communication Approach for a Mobile
Environment”, Proceedings of the 37th Hawaii International Conference on System Sciences, 2004.

[3] Arto Hämäläinen, Jari Porras and Pekka Jäppinen: “Service Discovery in Mobile Peer-to-Peer
Environment “, 5th Workshop on Applications of Wireless Communications, pp. 21-29, August 2007,
Lappeenranta, Finland.

[4] The UMSIC Project homepage, www.umsic.org
[5] The UMSIC Project, "Work Package 1 - Requirements".
[6] The UMSIC Project, "Work Package 2 - UMSIC Architecture Design, Specification and System

Integration".
[7] Nokia, "Nokia N900 mobile computer - Technical Specifications.",

http://maemo.nokia.com/n900/specifications/
[8] "Clutter Toolkit", http://www.clutter-project.org
[9] "Gstreamer: open source multimedia framework", http://www.gstreamer.org
[10] Tadashige Iwao, Satoshi Amamiya, Guoqiang Zhong and Makoto Amamiya, “Ubiquitous Computing

with Service Adaptation Using Peer-to-Peer Communication Framework”, Proceedings of the The Ninth
IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS'03), pp. 240, 2003,
ISBN:0-7695-1910-5

[11] Henrik Abramowicz, “Ambient Network Project Description and Dissemination Plan”,
http://www.ambient-networks.org/phase1web/publications/D1_A1_AN2_Project%20Description.pdf

