
Data Access Management Pattern

Sergey Skudarnov
Saint-Petersburg State University

Peterhof, Russia
sergey.skudarnov@gmail.com

Abstract

The paper describes basic ideas, architectural structure and details of implementation of the pattern for
designing uniform interaction model with external data sources and external services – called Data
Access Management Pattern – that has been developed within the scope of Ubiq Mobile research project
– a universal platform for mobile online services. The pattern presents completely uniform API for all
supported types of external data sources. Such unification imposes some functional limitations but there
are use cases when the basic set of operations for processing external data – such as Open and Close,
Read and Write, Seek, etc. – is generically enough. In those cases wide support of external data sources is
more preferable. The principal novelty of our pattern is that it provides client with the ability to work with
external data in customized representation, specially tuned for concrete clients’ needs.

INDEX TERMS: DATA ACCESS, EXTERNAL DATA SOURCES, DESIGN PATTERN, UBIQ MOBILE PLATFORM

I. INTRODUCTION

Systems that need to work intensively with various types of external data sources (like
HTML and XML, external files, databases, and so forth) and external services (TCP/IP, RSS
feeds, Web services, and so forth) required a uniform interaction model. We will use a “data
source” term for both external data sources and external services when talking about external
data in general and differentiate them explicitly if necessary. Such sort of unification
problems are used to solve through design patterns. The key requirements to the design
pattern that could be applicable for the situations like this one are following:

Data access unification: The pattern have to provide uniform API for all supported
types of data sources;
Data access management: The pattern have to manage synchronization issues and
shared access policies;
Data abstraction and manipulation: The pattern should provide client with the
ability to work with data in abstract object-oriented terms.

 The problem of uniform interaction with external data sources arises in many software
development projects. The most common way to solve it is development of restricted ad hoc
solutions within the scope of specific projects to meet specific needs. On the other hand there
are specialized frameworks like JDO (Java Data Objects) [1], SDO (Service Data Objects)
[2], ADO (ActiveX Data Objects) [3], and so forth. Such frameworks have rich functionality
(even redundant in some cases) but their applicability is limited for different reasons: the
frameworks are too “fat” and heavyweight due to their universality and rich functionality,

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 122 --

support only restricted set of data sources, are platform-dependent, etc. But there are many
situations where only basic set of operations for access to external data – such as Open and
Close, Read and Write, Seek, etc. – is needed. This article is targeted to systems where
unification is more important in comparison with rich functionality. Such cases can include,
for example, various platforms and frameworks that provide uniform API for access to
external data sources. The paper describes Data Access Management Pattern (DAMP) – a
pattern that presents one of possible approaches to design the uniform interaction model with
heterogeneous data sources.

The DAMP pattern presents limited but self-sufficient functionality for access to external
data sources via uniform interfaces for all supported types of data. At the same time DAMP
pattern allows the user to customize external data, structuring them in his/her personal way. In
such case all standard DAMP operations would work with structured data performing
necessary filtering and marshalling actions automatically.

Interfaces with external services are more diverse than interfaces with the data sources, and
therefore cannot be formalized within a single pattern. For some types of services providing
sort of data access (like RSS) we can use universal DAMP pattern whereas for more complex
services it is impossible and the related pattern’s components provide their own API.

During the rest of paper we will use “DAMP pattern” term meaning a general design
structure, and “DAMP system” term as the pattern’s implementation.

The work has been fulfilled within the scope of Ubiq Mobile project [4] – a universal
platform for mobile online services – that uses DAMP system as a part of its server software
for providing user applications with uniform access to external data sources.

II. DAMP ARCHITECTURE

The DAMP architecture provides a set of core components (see Figure 1):
Data Mediator Services
Data holders (DAMP Data Objects)

DAMP clients are programs and applications running on the server that use DAMP system
for access to the data. Instead of using technology-specific or platform-specific APIs and
frameworks, DAMP clients use relationally simple DAMP programming model and uniform
API provided by Data Mediator Services (DMS). DAMP clients work in terms of DAMP
Data Objects and do not need to know additional details regarding data persistence,
serialization, etc.

In turn DMS includes the following types of components:
Mediators
Sessions
Descriptors

A. Mediators

All interactions of DAMP clients with data sources are performed through Mediators –
service processes that constantly run on the server and work with users’ applications in the
request-response mode. Mediators provide DAMP clients with access to external data (like
HTML and XML, external files, databases, and so forth) as well as to external services

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 123 --

(TCP/IP, RSS feeds, Web services, etc.). Each Mediator works with its own type of data
source serving all DAMP clients. Mediators encapsulate all data source-specific interaction
routines being the only components inside DAMP system that have direct access to the data
sources. Such approach makes the whole DAMP system more flexible in terms of
extensibility by adding support for new types of data sources and resistance to possible
changes.

Fig. 1. General architecture

Mediators are low-level components of DAMP system that encapsulate all data source
interaction routines. They are obviously data source-dependent and so cannot provide abstract
and uniform data source interaction model. DAMP pattern contains interface components -
Sessions and Descriptors – that provide required unification.

B. Sessions

DAMP clients don’t have direct access to Mediators’ methods and data. Instead, they are
working with Mediators via objects of special classes – Sessions and Descriptors – provided
by platform API.

Sessions act as connection providers. When DAMP client needs access to external data
source, it uses an appropriate Session (corresponding to the type of data, one Session works
for all data sources of that type) to establish a connection with the data source. The Sessions
provide basic API for connection and disconnection operations that is completely uniform and
similar to all supported data sources.

For access to the specific data source of a given type, the DAMP client establishes
connection with the data source through a Session. After establishing connection, the Session
returns to DAMP client a special object called Descriptor that represents particular data
source.

C. Descriptors

Descriptors are special DAMP objects that “represent” external data sources for
applications in the same manner like handles represent files in Win32 API. When Session
provides access to a data source, it assigns a Descriptor for the access and the Descriptor is

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 124 --

being associated with the source until either the Session terminates or the Descriptor is closed
using the Session’s API. Like Sessions, Descriptors provide uniform API for all supported
types of data sources.

Descriptors’ creation and destruction operations are managed by Sessions. So for usability
purposes it is convenient to use Factory Method pattern [5] targeted to such sort of
relationship. Descriptors are considered as products whereas Sessions act as Descriptors’
creators. The Session class is an abstract class and does not provide an implementation for the
factory method it declares. Each subclass defines an implementation for the factory method
that creates the appropriate Descriptor. So we have a parallel class hierarchy that represents
the relationship between Descriptors and Sessions (see Fig. 2).

Fig. 2. Descriptors and Sessions class hierarchy

In the DAMP system Descriptors are used not only to identify the data sources. All data
retrieved from the data sources using the Mediators are temporarily stored in special objects –
instance of RawSessionData (RSD) class. Descriptors use RSD objects as their internal
buffers and manage their creation, destruction and life-time issues.

D. RawSessionData

RawSessionData is one of the DAMP Data Objects type. Data retrieved from the external
data source by Mediators is represented in its native format (we call such data as raw data).
The raw data is stored in the RSD objects that are managed by Descriptors. RSD objects act
as intelligent buffers with a basic set of operations to work with its content. In the DAMP
system for each supported type of data sources a concrete RSD class derived from the base
class RawSessionData is created. The internal structure of each derived RSD is specific to the
concrete data source and can implement its specific storing/caching/interacting behaviors and
policies. The interface of each derived RSD is also dependent on the concrete data source.

RSD objects are internal components in the DAMP system and in most cases DAMP
clients don’t need direct access to them. Instead, they work with data through another type of
DAMP Data Objects – SessionData.

E. SessionData

One of the DAMP pattern’s key points is to provide DAMP client with the ability to work
with external data in customized representation specially tuned for concrete clients’ needs.

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 125 --

Such customization can be performed using special objects – SessionData. There are two
possible SessionData’s use cases.

The DAMP system assumes set of predefined SessionData objects for most commonly
used types of data sources like files, web pages (accessed via HTTP(S) protocol), and so
forth. Session API provides the access to those SessionData objects. So in standard cases
DAMP clients may simply choose corresponding Session to get required SessionData object
from the set of predefined ones.

Another use case is to define your own SessionData if no predefined ones are suitable for
your needs. Client-defined SessionData must meet certain rules to be compatible with DMS
(usually it is implementing via the pure virtual inheritance). That rules include the demand for
implementation of special method – FillContent() – that defines conversion process from
raw data to SessionData representation. Without defining FillContent() it is impossible to
make customization because DMS don’t know how to make data conversion. All conversion
routines are encapsulated in FillContent() method, so DMS should simply invoke it to
perform the conversion. For predefined SessionData objects FillContent() methods are
also predefined, so one doesn’t need to take care of it. Once the new SessionData is defined,
DAMP client uses Descriptor API to invoke FillContent().

Fig. 3. General interacting structure

III. SAMPLE CODE

In this section we describe the two possible ways of DAMP system usage. We are focusing
only on client-side code, leaving all internal DMS-level implementation behind the scenes. As
the programming language, C++ has been chosen.

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 126 --

In the first example we use predefined SessionData object for access to an ordinary text
file. Session class declares operations for Descriptors’ construction and destruction.
Subclasses implement these operations for specific kinds of Descriptors. Also each subclass
defines operations for predefined SessionData objects usage. In our example we have
OpenTextFile() method that returns an object of TextFile type – a subclass of abstract
SessionData class.

enum OpenMode { ERead, EWrite }; //flags to specify data source’s open
mode

class FileSession : public Session {
public:

 // ...
 virtual FileDescriptor* OpenFile(string fileName,

 OpenMode openMode = ERead);
 virtual bool CloseFile(Descriptor* aDescriptor);
 TextFile* OpenTextFile(string fileName, OpenMode openMode = ERead);
 // ...

};

TextFile object defines a set of operations that are typical for text files processing. Here
is an example of possible interface.

class TextFile : public SessionData {
public:

 // ...
 string GetFirstLine();
 string GetNextLine();
 string operator[](size_t lineNo);
 bool Seek(size_t lineNo) const;
 size_t GetCurrentLineNo() const;
 size_t Size() const;
 // ...

};

The client code will be following:
FileSession fileSession;
TextFile* textFile = fileSession.OpenTextFile(“example.txt”, ERead);
// textFile usage...
delete textFile;

Notice that for Descriptors we have explicit Close operation. For SessionData objects there
is no such operation, so the client is responsible for correct resource release.

In addition to the predefined SessionData objects, we can use client-defined SessionData
objects to convert raw data into customized representation. As an example, let’s consider
HTML page source. DAMP client should define a SessionData’s subclass for its
customization – let’s name it MyHtml. SessionData is an abstract class that declares
method FillContent(RawSessionData&) for performing converting operations. Each
subclass of SessionData must provide an implementation for this method where conversion
procedure from raw data format into client’s customized data representation is defined.

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 127 --

FillContent() takes a reference to RawSessionData object as a parameter that can be
used inside FillContent() for conversion implementation.

class MyHtml : public SessionData {
public:

virtual void FillContent(RawSessionData&);
// other methods, fields, and so forth...

};

void MyHtml::FillContent(RawSessionData& rawSessionData) {
 RawHtmlData& rawData = static_cast<RawHtmlData&>(rawSessionData);
 // further implementation...
}

Once MyHtml is defined we use corresponding Descriptor to execute FillContent()
method.

class HttpDescriptor : public Descriptor {
public:

 bool GetData(SessionData&);
 // ...

private:
 RawHtmlData* rawData; // class RawHtmlData : public RawSessionData

// ...
};

bool HttpDescriptor::GetData(SessionData& sessionData) {
 sessionData.FillContent(*rawData);
 return true;

}

So the client code will be following:
MyHtml myHtml;
// ...
HttpSession httpSession;
HttpDescriptor* descr = httpSession.OpenHttp(“http://...”, ERead);
Descr->GetData(myHtml);
httpSession.CloseHttp(descr);
// myHtml usage...

IV. CONCLUSION

The DAMP system has been developed in the Department of Applied Cybernetics of St.
Petersburg State University as a research project. Currently there is a version of the system
that supports such external data sources as files and HTML pages (accessed via the HTTP
protocol). The DAMP system is integrated into the server part of the Ubiq Mobile platform.
University students developed several test applications that we use for demonstration and
debugging purposes. Currently only read-only access to the data sources is supported.

The plans for the nearest future include adding support for other external data sources like
RSS feeds, data bases, and so forth. Also we are still working on writing operations. Writing
is actually more complex operation than reading and it can imply some nontrivial pitfalls. But

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 128 --

in the future versions of the DAMP system we are planning to add completely support for
both reading and writing operations.

REFERENCES

[1] Java Data Objects (JDO), http://java.sun.com/jdo/
[2] Simplify and unify data with a Service Data Objects architecture, September, 2005,
http://www.ibm.com/developerworks/webservices/library/ws-sdoarch/
[3] Jason T. Roff, “ADO: ActiveX Data Objects”, O'Reilly Media, 2001.
[4] Onossovski Valentin, Terekhov Andrey, “Ubiq Mobile – a New Universal Platform for Mobile Online
Services”, Proceedings of 6th Seminar of Finish-Russian University Cooperation in Telecommunications
(FRUCT) Program, Helsinki, Finland, 3-6 November 2009, pp. 96-105.
[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of Reusable Object-Oriented
Software”, Addison-Wesley Professional, pp. 107–117, 1994.

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 129 --

