
Parallel Programming for Many-Core SoC
Alexey Syschikov

SUAI, Institute HPCNT
Saint-Petersburg, Russia

alexey.syschikov@guap.ru

Abstract

The common Many-Core SoC architectures is a quick-growing segment of distributed parallel
computing systems. Such systems cannot be effectively programmed “manually”, however there are only
basic instruments and tools for programming.

In this article we propose the concept of Many-Core SoC parallel programming. The concept presents
visual programming approach, coarse-grained parallel program organization with sequential grains and
dynamics of parallel computation. There are implemented the set of tools named VIPE: VPL Integrated
Programming Environment. VIPE includes strict mathematical formal model basis, visual parallel
programming language for coarse-grained programs design, toolset for mapping, translating and pre-
compiling of the program scheme and the Many-Core SoC simulation software.

INDEX TERMS: PARALLEL PROGRAMMING, DYNAMIC COMPUTATIONS, INTEGRATED
PROGRAMMING ENVIRONMENT.

I. INTRODUCTION

The common Many-Core SoC architecture template consists of processing elements
(containing computational core, local memory and communication controller), communicated
with some communication environment. The example of such architecture is represented
below:

Fig. 1. Many-Core SoC architecture example

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 138 --

It is obvious that such architecture inherit all advances and lacks of distributed multi-
processor computing systems. Most important of them are:

+ – Simplicity of scaling;

– – Complexity of programming.

Systems with clustering of processing elements form the separate specific subclass of the
common Many-Core SoC architecture.

Fig. 2. Clustered Many-Core SoC architecture

For such systems all above characteristics stands correct, however the specified advantages
and lacks become stronger: such systems are simpler to scale and more complex to program.

In this article let us stand on the question of Many-Core SoC programming.

II. MAIN PART

The main tasks in programming of Many-Core SoC are:
1. Decomposition of computational algorithm into blocks that can be effectively

executed on the cores of distributed system.
The complexity of this task: processing elements cannot work with shared data
(shared memory is not presented in such systems). Thus decomposed blocks should
depend just from incoming data and perform only local computations with these
data.

2. Allocation (allocation scheme) of the decomposed algorithm on the processing
elements of distributed computation system.
The complexity of this task: duration of algorithm execution and performance of
the computing system in a whole considerably depends on the allocation quality.
Bad allocation leads to inefficient utilization of computational resources, to

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 139 --

overload of some processing elements or to overload of communication system,
which leads for other part of computing system to stay idle.

3. Organization of data interchanges between allocated algorithm blocks and
processing elements to which blocks are allocated.
The complexity of this task: organization of interchanges besides data transfer also
requires performing connection set, negotiation of interchange protocols,
synchronization of computations and communications and other actions.

The separate task is the selection of computation granularity level, i.e. to decide what size
should have blocks of decomposed computational algorithm to effectively allocate blocks on
the system modules, to perform computations effectively enough, to evenly load system etc.

Undoubtedly, distributed computing systems can be programmed “manually”. For small
enough tasks and large-grain algorithms it’s a feasible task. However for real-size tasks and
for algorithms that should be portable between computing systems with different
configurations it’s nearly impossible.

The MPI standard can be named as the main instrument for distributed systems
programming. It is a standard de-facto for distributed systems programming, it have wide
range of functional abilities and it have many implementations for different architectures and
operation systems.

However, MPI is still a nearly low-level standard and it doesn’t allow to solve effectively
the algorithm decomposition task and the computation blocks allocation task. In addition it
has the set of lacks that are mostly appreciable on the low-power computing systems:

1. Programs written using MPI standard works only with MPI loader and runtime that
rise system processing elements occupation with overheads.

2. Programming using MPI standard still requires a lot of manual work to organize
data interchanges and synchronization.

The separate problem is the programming and debugging of algorithms when there is no
ready hardware platform implementation. The presence of ready and tested algorithms to the
moment when a hardware platform will become ready is a very significant topic: nearly
nobody need hardware platform without software. In addition, from the hardware platform
appearance it faster goes out of date, thus it’s not profitable or even impossible to wait for
software for the new platform appears. I.e. the development and testing of the software should
be done in parallel with the development of the hardware platform.
A. The concept of Many-core SoC programming

We propose the many-core SoC programming concept that has the set of key thesis:
1. Coarse-grained parallel computations with sequential processing inside coarse-

grained blocks;
2. Visual approach to parallel programming;
3. Dynamics of parallel computations.
Now we introduce in details what every of thesis involves.

A.1. Coarse-grained parallel computations
The distributed Many-core SoC computing system is traditionally built using the

specialized processing elements with not so high productivity.
Thus for such systems it looks reasonable to use coarse-grained parallel computations,

where the element of computation has the amount of code equal to functions or procedures of
traditional programming languages. Such computations in nature correspond to the
organization of computations in parallel computing systems with distributed architecture.

With this the processing elements to which the decomposed coarse-grained algorithm
blocks will be allocated rarely have wide abilities for parallel execution or have a specific

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 140 --

command set for internal parallelization. Thus it’s inconvenient and ineffective to program
and parallelize computations inside the decomposed block (fine-grained programming, i.e.
programming on the operator level) using the same instruments as for decomposition of the
algorithm. So for such programming task we propose to use traditional programming
language or specialized assemblers with further linking with coarse-grained scheme objects.

A.2. Visual approach to parallel programming [1]
A decomposed algorithm with obviously specified split blocks and data and control

dependencies between blocks corresponds to a network of objects or graph. Graphical (visual)
representation is a most natural representation of a graph or network.

A.2.1 Advantages of the visual approach

Let’s see, what abilities and advantages are proposed by a visual approach against a
traditional programming.

1. Integration of design and programming.
What is the common way to write a program? Software designer takes thw source
algorithm description (text description, abstract schemes, SDL diagrams etc.) and
draw either scheme of the future parallel program or the state mschine of the future
system. After that programmers take this scheme and write it on the programming
language. I.e. in fact the program scheme is described twice: the first time in the
form that is natural for designer and the second time in the form natural for
compiler.
Graphical (visual) languages allow avoiding double work: designer can draw
program scheme immediately in terms of visual programming language.
In addition this approach allows avoiding problems with further synchronization of
changes in design scheme and program.

2. Obviousness and interactivity.
Visual approach provides obvious representation of the language objects
interconnections, their dependencies, interactions, control etc. In addition visual
approach makes possible to use interactive development environment for dynamic
representation of program parts, hierarchical constructions, grouping and
consolidation of objects, visual debugging etc.

3. Obvious parallelism.
Program on any visual language in nature is a scheme. Writing program as a
scheme allows describing obvious parallelism naturally, moreover it stimulate to
describe parallelism.
This gives wide abilities to make automatic parallelization of parallel program
objects that are independent by data or control and organize pipeline parallelism for
dependent objects.

For implementation of this concept the visual parallel language VPL was developed.

A.2.2 Visual parallel programming language VPL [2]

The experience in visual language development shows: graphical approach have a set of
unquestionable advantages, however it cannot fully substitute traditional programming
languages. A solution was found in usage of combination of graphical (VPL language) and
traditional approaches: visual programming of high-level program scheme and programming
on traditional languages for interpretation of scheme elements.

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 141 --

Fig. 3. Program in visual parallel programming language VPL

Parallel program is represented as an hierarchical network of operators and data-objects.
Operators are an abstraction of active program components – functions, procedures, tasks
(depends on granularity of parallel computation). Data-objects are an abstraction of any data
storage types that exists outside operators.

All interactions between each other or with data-objects are obviously represented on the
parallel program scheme level.

Operators interact through data-objects. All data that can be accessed by several operators
should b obviously represented on the parallel program scheme as data-objects.

VPL language is algorithmic complete, it provide abilities to organize computations
control depending on data values on the level of parallel program scheme. Programmer
neither need nor can to control parallel computations inside the sequential programs of
separate functions. This prevent interactions in parallel program from being not observable
and parallel program scheme from being chaotically and non-verifiable.

Terminal operators of program scheme are the only instrument to make data processing.
They are described on traditional textual sequential programming languages. This allows
describing local data processing in processing elements of parallel computing system on
habitual programming languages and in habitual terms.

A.3. Dynamics of parallel computations
Computational tasks of real life rarely can be laid onto simple algorithms with linear

structure. In common algorithms of such tasks contain lots of conditional branching,
alternative paths, cycles etc.

Undoubtedly the proposed concept and VPL language allows comfortably describing such
computations, however for effective computations organization it’s not enough, especially in
cases when we have limited resources.

Of course it’s possible to build static graph with many alternative paths. However it will
contain lots of nodes especially when there will be hierarchical branching. Allocation of such
graph cannot be build effectively enough: it is impossible to define on an allocation building
stage which branches will be executed in which moment because they will depend on the

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 142 --

values of processing data and on other conditions. In addition the presence of redundant
amount of nodes in graph will require a lot of resources on system processing elements for
allocation, which will be used inefficiently: there is a very low possibility that all allocated
branches will be executed.

To solve this problem we propose the model of dynamic parallel computations: it means
that program graph during program allocation to the program still remains hierarchically
organized. Only when condition for some control operator will be calculated its branch for
these and only for this condition processing will be dynamically unrolled. Similarly to this the
parallel cycles will work: there will be dynamically unrolled the exact amount of iterations
that is needed to process the current data.

It should be noted that our concept allows describing dynamic computations but it is not
mandatory. Moreover the most effective is to use the rational combination of static and
dynamic unrolling methods. For example, for some tasks and computing systems it’s more
effective to use fully static approach.

The selection between static and dynamic implementation of operators currently should be
done manually be an algorithm designer and programmer. In future the appearance of tool that
will automatically optimize the usage of dynamics for an exact configuration of platform and
task is possible.

A.4. Examples of developed programs
Within the scope of the presented concept there were developed the set of programs from

the area of communication algorithms, image processing etc.

Fig. 4. Example of parallel program in VPL language

On the presented example there can be seen some advantages that are provided by the
proposed concept, by visual approach and by programming language.

1. Obviousness of program scheme that represent an algorithm scheme;
2. Obviously seen data and control dependencies between algorithm objects;
3. Hierarchical program composition;
4. Abilities of clustering and specialization of separate blocks, components etc.

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 143 --

B. VIPE: VPL Integrated Programming Environment
For distributed Many-core SoC computing systems programming on the VPL language the

software complex was developed. It allows performing all necessary stages for development,
debugging and testing of distributed computing system software.

The general scheme of the VIPE (VPL Integrated Programming Environment) is the
following:

Fig. 5. The general scheme of the VIPE

The software development complex consists of the next base components:
Visual designer. The environment for developing parallel program on the VPL
programming language;
Translator. The tool for transformation of program scheme in internal system
format into the unified annotated graph format for other complex components
and for external tools;
Mapper (allocation builder). Tool for automated allocation of program scheme
elements to processing elements of Many-core SoC;
Pre-compiler and linker. Code preparation for program graph, linkage functional
code and program scheme, code generation for execution on heterogeneous
Many-core SoC, linkage of system loadable modules.
Software simulator. Simulation of parallel program execution on different
platform models and configurations, algorithm program debugging and testing
without requirement to have ready hardware platform.

The presented software complex VIPE – VPL Integrated Programming Environment
allows to:

1. Develop parallel algorithm for the specified task, perform hierarchical
decomposition to the required granularity level, design parallel algorithm that will
be effective for execution on parallel Many-core SoC with distributed structure.

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 144 --

2. Estimate execution time and computation complexity of the algorithm on the early
stages. This will allow making a frame estimation of requirements to computation
resources, memory, and communication system.

3. Make a full algorithm program; perform debugging and testing of developed
software. Execute software on different models and configurations of computing
platform; obtain more detailed characteristics of software and requirements to
hardware.

4. Perform compiling and linking for an exact platform using specialized platform
compiler. Obtain loadable modules that can be executed exactly on the specified
computing platform.

5. Use benefits of pipeline parallelism, natural parallelism of applied algorithms,
natural dynamics of executing task to extend characteristics of parallel program,
increase performance and throughput, decrease execution time and latency.

It should be separately noted that all concept, methodology and toolset is based on the
strict formal mathematical model of parallel computations. It guaranty that obtained execution
results will be equal either for virtual algorithm execution on simulator or for execution on
hardware platform and independently from the exact platform configuration to which
algorithm will be allocated.

C. Formal model of parallel computations
It doesn’t look reasonable to go into mathematical details of formal computational model

of parallel computations that lies in the basis of the proposed concept [3,4,5], programming
language and integrated programming environment. However we need to say some words
about main advantages that presence of formal model provides. Such advantages are:

1. Verification of parallel program “by design”.
Computational model allows formulating and proofing theorems, corollaries and
characteristics of program schemes. Presence of VPL object formal descriptions
allows applying proofed in the formal model characteristics to programs that are
developed using the VPL language. Such characteristics can be:
a. Formal correctness of program design
b. Finding deadlocks/livelocks on translation stage
c. Finding circularities on translation stage
d. Ability to obtain conclusions about overall program execution basing only on

some time of program execution.
2. Equivalent transformations.

Equivalent transformations are transformations from one program scheme to
another program scheme that are formally equal to the source ones using rules that
are defined in formal model. The mechanism of equivalent transformations can be
used for:
a. Optimization of program scheme for specific tasks and platforms using

aggregation, grouping etc.
b. Functional validation of parallel program using debugging of equivalent

sequential version with guaranty of equivalent execution of the source parallel
implementation and other program characteristics.

III. CONCLUSION

Summarizing the above it can be said that the proposed concept, language and integrated
environment for Many-Core SoC programming offers:

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 145 --

Portability across a wide set of reconfigurable Many-Core SoC architectures
Efficiency in usage of Many-Core SoC resources by one or more applications
Formal verification of correctness of a parallel program scheme.
Graphical design as a native way for expressing parallelism inherent to Many-
Core SoC and applications

REFERENCES

[1] A.Y. Syschikov, “Application of visual approach for software development”, Proceedings of ninth
scientific session of SUAI, vol. I.: technical sciences, SUAI, Saint-Petersburg, 2009, .130-133.

[2] Y.E. Sheynin, A.Y. Syschikov, “Task-level Parallel Programming Language for Space and Aeronautical
Applications”, European conference for aerospace sciences (EUCASS) (EUCASS), Moscow, 2005.

[3] Y.E. Sheynin. “Asynchronous growing processes – formal model of parallel computations in distributed
computing systems”. Proceedings of international conference “Distributed data processing” Novosibirsk,
1998, 111–115 .

[4] Y.E. Sheynin, “Formal model of dynamic parallel computations in parallel computing systems of
experimental data processing”, Scientific Instrumentation, 1999, vol. 9, #2. .22–29.

[5] V.I. Ivanov, Y.E. Sheynin, A.Y. Syschikov, “Programming model for coarse-grained distributed
heterogeneous architecture”, XI International Symposium on Problems of Redundancy in Information and
Control Systems: Proceedings, SUAI, 2007, .246-250.

__________________7TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 146 --

