8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

Implementation of UMSIC Group Management
Service

Jussi Laakkonen, Tommi Kallonen, Kari Heikkinen, Jari Porras
Lappeenranta University of Technology
P.O. Box 20,
53851 Lappeenranta, Finland
{jussi.laakkonen, tommi.kallonen, kari.heikkinen, jari.porras} @]lut.fi

Abstract

Mobile devices make it possible for different users to communicate and collaborate with others despite
their location. As the devices may have a connection to other devices but are not necessarily connected to
the Internet, they should not rely on centralized services, but they should be able to handle the tasks in
peer-to-peer manner. One of the important tasks with mobile device collaboration is group management.
The groups need to be created and made available for other users to join as well as managed during and
after the collaboration. In this paper we introduce the UMSIC project and the JamMo application
designed for children’s musical collaboration to enhance social inclusion. JamMo application relies on
UMSIC middleware on many of it's features, especially the networking functionalities which are
implemented in service oriented manner. The services provide the required functionalities for finding
other users, to create groups with them and to create music within these groups. The group management
service is in charge of creating, advertising, joining to and leaving from a group. Group management
service as well as other UMSIC middleware services are designed to function in Peer-to-Peer manner
without the need of centralized control.

Index Terms: UMSIC, Middleware, Service, PeerHood, Peer-to-Peer, Group Management

[. INTRODUCTION

The UMSIC (Usability of Music for Social Inclusion of Children) [1] project is a FP7 project
funded by European Union aiming to develop an interactive product to enable children to
communicate informally with their peers by using familiar mobile technologies. The purpose of
the project is to improve social inclusion and reduce isolation in groups of children, especially
targeting children with attention deficiencies and children of immigrants, whose language is
different from that of the host country. The goals of this project are going to be achieved through
musical activities in different social contexts [2]. These contexts include working alone, with
pair and in groups either in school environment or on free time to create music with the tools
offered. The product of the project, the JamMo (Jamming Mobile) application, is developed to
answer the requirements [3] with the help of UMSIC middleware [4], [5]. The JamMo
application relies on top of the middleware utilizing functions provided, which include
automated connection establishment in service oriented manner (with the help of PeerHood [6]),
secured data transmissions between devices, management of groups and manipulation of the
music material. JamMo application will be used as stand alone application as well as in
collaboration with other users. In collaborative use cases there is a need for group management.
Collaborative work with JamMo should be possible anywhere when two or more JamMo devices
are in same neighborhood. Therefore, the group management can't rely on centralized services,
but all devices must be able to manage groups in a Peer-to-Peer manner. JamMo is designed and
developed for Nokia N900 Internet tablet [7] running Linux based Maemo OS (Operating
System) and licensed under GPL (Gnu General Public License).

87

8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

PeerHood is an implementation of Peer-to-Peer neighborhood and communications concept in
mobile environment which enables proactive discovery of devices and their services from
neighborhood whilst providing means for communication. PeerHood is targeted to Personal
Trusted Devices (PTD) and it is designed to be a transparent networking module between the
network layer and the applications. The main components of PeerHood are the background
daemon and the application library. PeerHood supports variety of networking technologies
through modular plug-in structure. Currently WLAN (Wireless Local Area Network), Bluetooth
and GPRS (General Packet Radio System) plug-ins are implemented. PeerHood offers
functionalities for device and service discovery along with service advertisement, seamless
connectivity between services and monitoring of nearby devices. The relation of PeerHood to
UMSIC project and JamMo application services is presented in [8]. The benefits of PeerHood to
UMSIC project and JamMo application are presented in [9].

Group management in wireless and mobile environments has been studied from different
approaches. Ren and Boukerche [10] proposed a distributed group management scheme for ad
hoc networks based on trust levels. AGAPE middleware [11] is a context-aware solution for
group management in mobile ad hoc networks. Distributed group management solutions have
also been widely used with wireless sensor networks. For example Vieira and Rosa [12]
presented a reconfigurable group management middleware service for such usage.

In this paper the current state of implementation of UMSIC middleware and especially the
group management service is presented. The solutions are presented from service
implementation point of view, since the connectivity in UMSIC middleware is handled in service
oriented manner utilizing Peer-to-Peer connections [5], [8].

II. JAMMO APPLICATION

One of the results of the UMSIC project is JamMo application for music creation and sharing.
JamMo allows children of different age groups (3-6 and 7-12) to create and share music using
different methods in four different usage scenarios: stand-alone, ad hoc, public and networked.
In these scenarios, depending of the nature of the scenario, children can sing, compose with
predefined sound loops or play with virtual instruments. For group and pair works the material is
located on all participating devices as prerecorded sound data. If some user has recorded a audio
sample to be used in group work it will be transferred to other participants before the work starts.

A. Stand-alone: Singing and composition games of 3-6-year-old children

The singing game is a simple karaoke application where a child can select a song and the sing
along. The singing will be recorded and it can be listened later on. In the composition game child
begins by selecting a theme from available possibilities. Each theme has a different look and
different musical elements available. The composition happens by adding prerecorded sound
loops, designed to fit to the backing track, to a musical track. There are two tracks; a backing
track, which can’t be edited and a track where the loops can be added. On the user interface the
loops are presented by different symbols fitting to the theme. A child can add, remove or move
the sound loops to different parts of the track. After the song is finished it can be listened as
whole and it will be saved to song bank on the device. The song can also be sent to teacher if the
composition happened in a classroom environment.

B. Ad hoc.: Composition pair game of 3-6 year-old children

The pair game is a extension to previously presented stand-alone composition game for 3-6-
year-old children. The main difference here is that now the players are working as a pair to
create a song. Before the composition is started child has to select a available group to join or
he/she can create a own group for others to join. During the composition they now have three
tracks in a song, one backing track, which cannot be edited, and one track for each player. Both

88

8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

can add sound loops only to their own tracks, edit own track and listen to a single track or tracks
or the whole song independently. Information about all of their track edits (loop identifiers and
places of the loops on the track) are transmitted in real-time to their pair, so both can see and
listen what the other is doing. After the composition has finished, the song is saved on both
devices and can also be sent to teacher.

C. Public: Inclusive music classroom of 7-12 year-old children

In public scenarios the use of JamMo happens in a classroom where a teacher has a computer
with desktop version of JamMo and a video projector to present JamMo usage on a public
screen. The children can work in groups up to four persons to create songs. They can create more
complex songs than younger children by editing up to six tracks. There is one track for each
participant and two tracks are reserved for teaching purposes, e.g. one has a backing drum track
and the other contains basic melody for the song. They can add sound loops or sound created
with virtual instruments to editable tracks. Additionally children can use own samples they've
recorded with the devices, if the samples are not present they will be transferred before the work
starts. The changes are updated to other members of the group in real-time. The teacher can
monitor and control the activities of different groups from his/her computer.

D. Networked: Informal on-line community of 10-12-year old children

The networked scenarios are meant for older children and for non-real-time collaboration.
Children can share musical material through on-line community, where children can also create
workshops. The work basically similar to the group composition for 7-12 year-old children, the
difference is that updates don’t happen in real-time, but they happen through server when the
user logs in on the device. This way the work is informal without the need for teacher
participation or control.

[1I. CONNECTIVITY IN UMSIC MIDDLEWARE

In the three latter scenarios (B, C and D) presented in previous chapter, the users need to
communicate with each other. To handle this communication GEMS (GEneric Middleware
Services) module of UMSIC middleware was created. GEMS handles all communication,
profile and group related tasks through specialized services.

A. Single connection approach

In the UMSIC middleware a single connection between peers is utilized. Our implementation
of Peer-to-Peer neighborhood and communications concept, PeerHood [6] is built on principle
that it creates a new connection for each service it tries to connect to on remote device. As
presented in [8] the middleware consists of multiple different services on each device. Since the
middleware is built for mobile device (Nokia N900 Internet tablet) where memory usage should
be carefully designed as recommended in Maemo developers manual [13], it would be a waste of
resources to create a new connection every time some of the services is used. In addition
PeerHood (Linux implementation written in C++) creates a new connection object for each
established connection. If there are multiple devices in the neighborhood which have JamMo
running the vast amount of connections could slow down the application and cause unnecessary
memory fragmentation, which is discouraged in [13]. The memory fragmentation would occur
when devices are in the move or there is interference in the wireless network and devices
continuously connect (create object, allocate memory) and disconnect (delete object, free
memory) to all services found on remote device. In JamMo more processing power must be
reserved for handling audio material and not for middleware operations.

In order to utilize only a single connection we have created a procedure where the established
connection object is passed to other services on lower levels, the hierarchical order of services
was presented in [8]. The connection established by PeerHood is a two-way TCP socket

89

8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

connection and therefore, it doesn't matter which of the devices has initialized the connection.
For example when device A finds a device B which has service JamMo running and device A
creates a connection to that particular service there is no need for device B to create a connection
to the JamMo service running on device A. The connection created by device A to service on
device B can be utilized for further communication. The PDU (Protocol Data Unit) of sent
packet contains information about the destination service so messages to different services over
single connection can be distinguished and dispatched to proper handler.

B. Connection establishment

First the device searches for other devices from the neighborhood which have JamMo service
enabled. The main purpose of the JamMo service is to verify the software versions running on
both devices, at this point user doesn't have to be logged in yet. If there is no pending connection
(waiting for software verification or peer authentication) or existing connection to that particular
device a new connection will be established to the service on the newly found device.

After the versions of the software are verified through JamMo service the created connection
object is passed to Authentication and Authorization service which verifies the users on the both
devices and exchanges certificates of both users. After authentication a symmetric AES
(Advanced Encryption Standard) encryption key for the session between the two connected
devices is exchanged. In the current implementation of the UMSIC middleware the
Authentication and Authorization service is not yet implemented in this extent. After the
authentication procedure the connection is finally fully established and can be used for further
communication between the two devices. The connection object is moved to list of connected
devices on both devices.

When the connection is in established state and can be found from the list of connected
devices the middleware tries to request the user profile (the profile information contains public
personal information about the user on that device) from that device. A request is sent to Profile
service on remote device. The Profile service is a simple service following request-reply
approach, which handles incoming requests and replies with requested information if the
requesting user has proper authentication. If the user hasn't logged in on the device to where the
request was sent, nothing will be returned as there is no active profile. To make sure that user
profiles are always available the profile requests are performed on regular intervals to each
connected device if profile is not received.

IV. GROUP MANAGEMENT IN UMSIC MIDDLEWARE

After the users are identified, authenticated and profiles are exchanged, it is possible to
establish groups of different sizes between users to create music together. This is done by using
the group management service of the UMSIC middleware. After the group is established and the
game is started the actions of the users are transferred between the group members using
collaboration service.

A. Group management between peers with centralized controller

For establishing groups between peers Group management service has been implemented. It
is designed to support distribution of group information to peers and to allow users to join to a
group and leave from a group. When a user creates a group and becomes the owner of the group
(created by the middleware when the user decides to start a networked game) the advertisement
of this particular group is started. This advertisement is sent to all connected devices (to Group
management service) on regular interval and stopped when the group is locked (creator of the
game selects to lock the game and after this further joins to the group are not possible) or when
the game is stopped and group deleted. The receiver processes the group advertisement and
stores (or updates if such group already exists) the information into list of groups so the user can

90

8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

see what kinds of groups are in the neighborhood. The middleware also performs periodic
requests to connected devices to inquire about their current group status. When Group
management service receives this kind of inquiry it responds with current group information
message which contains same information as the advertisement sent by group creator. The
answer to an inquiry can be sent by anyone who is in some group, user does not have to be the
owner of that particular group. When a response to inquiry is received by the Group management
service it will be added to the same list with group advertisements or existing group info is
updated if such group exists. The group information is removed from the list of groups if no
advertisement or response to inquiry is received after defined period of time, currently after one
minute. This is done to keep the size of the list fairly small and to remove the groups which have
been closed, deleted or moved away from range.

The group works as a Peer-to-Peer group, each member of the group has a connection to each
group member. This removes the need for centralized control of group actions (e.g. adding a
loop to a track), each member of the group sends all group actions directly to other members of
the group. But we do have a loose ownership to each group for maintaining the group
memberships in a centralized manner. In current solution the ownership can be transferred to
some other member of the group and therefore, labeled as loose ownership. If the owner of the
group decides to leave the group, ownership is given to next member in the group (next is the
next one in the group member list) and the group work can continue as before. Other members of
the group receive an advertisement with the new owner defined in the message data and they
update their group information with the received information. These kind of changes are allowed
only from the current owner, which in this case is the leaving owner. Also new member
notifications or leaves, which force members of the group to update their current group
information, can be originated only from the current owner of the group.

B. Benefits of the centralized controlling in group management

The centralized controlling of group memberships reduces the amount of messages sent at
joining phase. For each join the additional messages needed to be sent is the amount of users
before the newly joined user as shown in Figure 1. If the group was controlled by peers it would
require that each joining member sends join message e.g. only to one member of the group that
was defined in the previous group advert or inquiry response. After this it would require that
existing members of the group negotiate about the joining of the new user. This procedure is
presented in Figure 2, where all devices notice that the advert is coming from Device 1 and
therefore, are sending the requests to that particular device.

Device 3 Device 1 Device 4

1: JOIN

1.1: MLIST

2:JOIN

2.1: MLIST

2.2: NEWMEM
\] S om

] mon
| 3.1: MLIST

3.2: NEWMEM
[]

Figure 1. Join procedure when group is controlled by Device 1

91

8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

e et

2.1: NEWMEM
2.1.1: MEMREP }

2.1.1.1: MUIST

3.1: NEWMEM
3.1.1: MEMREP }

[————— | 3211:MUST

3.2: NEWMEM

3.2.1: MEMREP

[

Figure 2. Join procedure when group is controlled by peers

From Figure 2 it can be seen that each join in a group controlled by peers would require two
messages between joiner and connected member (request and reply) and the negotiation
messages between each member. This would result in

2+2(n-1) (1)

messages where n is the amount of members in group at that moment. The centralized
controlling of group is lighter from network consumption point of view because it requires

24(n-1) (2)

messages for each join or leave (as it can be seen from Figure 1), where n is the amount of
members in group before join.

Since the main usage of JamMo application is in classrooms there can be multiple small
groups (pairs and/or groups of 3 or 4 as specified in [2]) the amount of group management
messages should be kept as small as possible because devices are connected through single
WLAN [4]. The target device, Nokia N900O Internet tablet [7], has also a Bluetooth adapter but it
is not used in the project because of the bandwidth limitations [4]. As the processing of the audio
material is resource consuming in general and especially on a mobile device, the transferring of
the different actions will require a lot from the network in terms of low latency, especially when
real time actions are required (less than 50 ms is recommended by Zimmerman et. al. [14] for
tolerable musical performance and less than 10 ms is required for the needs of the UMSIC
project [15]).

In figures 1 and 2 message JOIN (join request) is 12 bytes, NEWMEM (new member
notification) and MEMREP (reply to new member notification) are 16 bytes each and size for
MLIST (member list, in bytes) can be calculated with

12+4(n-1) (3)

where 7 is the group size at that moment. The sizes and contents of the messages are defined in
the protocol specification of the UMSIC project [16]. The amount of data to be sent at each
joining phase can be calculated by using equations (1) and (2) and setting correct sizes for
messages. For peer controlled groups it will result in

92

8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

12+ (12+4(n—1))+((16+16)(n-1))

(4)

where 7 is the amount of group members in the group at that moment. In centralized controlling
the amount of data can be calculated with

12+(12+4(n-1))+(16(n-1))

(5)

where n is the amount of group members in the group at that moment. Figure 3 shows the
cumulative amount of data sent when a user joins to a group. In Figure 4 the effect on current

group sizes is shown.

8192

T T T T T T 1
Peer controlling |

7680

Centralized controlling — —

7168

6656

6144

5632

5120

4608

4096

3584

3072

2560

2048

Total amount of data sent (bytes)

1536

1024

512

0

—
|
6

\
7

8 9 10 11 12 13 14 15 16 17 18 19 20

Group joins

Figure 3. Total amount of group management data sent after each join

512

448

384

320

256

192

128

Total amount of data sent (bytes)

64

\
Peer controlling
Centralized controling — —

e
e
/ -
e
-~
/ ~
~
~
—
—~
—
—
—
—
/
\ \ \
2 3 4 5
Group joins

Figure 4. Total amount of group management data sent after 1%, 2™, 3", 4™ and 5" join

93

8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

From both figures (3 and 4) it can be seen that the difference is fairly minimal when group
sizes are small (less than 8). As the size of the group grows the difference is quite significant
when compared to the total amounts of data to be sent between group members. The effect of our
selected approach to the network consumption is therefore, quite minimal, since in the scenarios
presented in chapter II the maximum group size is 4.

In the classroom the tasks given for different students can vary in length of the task and in
task difficulty. The amount of group management messages can grow rapidly since new group is
established for each task. When the amount of connecting devices grows (e.g. in a classroom
there could be over 20 devices communicating in small groups) the amount of group
management messages naturally grows depending on the sizes of the groups.

C. Collaboration during group work

After the group has been successfully created and other users have joined it the responsibility
of managing the the group work moves to collaboration service. The collaboration service is only
active during group work — if the group work is not active, collaboration service discards all
messages sent to it. During active group work the collaboration service is used to transfer the
actions of a user to all other group members. If a user does a change in his/her track (each user
has only one personal track he/she can edit), information about the change is sent to other group
members. The change can be adding or removing a loop on loop track, or a change on virtual
instrument track. The information about the music on virtual instrument tracks can be either midi
information about note on/off at certain time or in the case of slider instrument the used
frequency at certain time. There is no need to transfer actual audio data between devices (except
singing, which is transferred as a whole when it is finished), for our needs it is enough to transfer
the control data related to changes, since all audio material is the same on each device. These
changes do not need to be transferred in real time, but rather "as-fast-as possible" to keep the
application usable.

Each user action generates certain amount of data, which is sent to every group member
directly. A loop action (add, remove and move) generates 22 bytes of traffic [16] that will be sent
to each peer in group. When virtual instruments are played, the actions are sent as midi data
where each note generates 29 bytes of traffic [16] to each peer in group. If a slider instrument is
played each action requires that a 32 byte sequence [16] is sent to other group members. Since
the nature of the tasks varies a lot and the behavior of the users is hard to predict, it is not
feasible to try to estimate the real amount of traffic to be sent between group members. The
slider instrument generates most traffic, since it is played by moving a finger on touch screen
[15] and each change is sent to other group members (32 bytes each) [16]. These changes can
happen multiple times per second (from 20 to 100) depending on the behavior of the user. With
the slider instrument the amount of data created by one user during one second can reach
maximum of 3200 bytes. The amount of data to be sent by all members of the group at once can
be calculated with

b(n-1)m (6)

where b is the amount of data to send, # is the group size and m is the amount of users playing an
instrument at the same time. If there are four members in one group and each of them uses a
slider instrument the group alone could generate maximum of 38,4 kilobytes of traffic each
second.

After the users have finished the song, the song is saved locally on all devices and
collaboration service is disabled. The information about the users taking part in song creation is
saved with the musical data. This way the information about group is not lost even though the
group as such doesn't exist anymore.

94

8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

V. CONCLUSION AND FUTURE WORK

The presented approach for connectivity in UMSIC Middleware suits well for the purpose
since memory usage is put to minimum. Based on early tests basic networking operations do not
seem to be slowing down the application. Solution for group management in UMSIC
Middleware works for the needs of networked games as it was seen on early tests. As it can be
seen from equations (1) and (2) the difference of amount of messages grows linearly and
therefore, full benefit of our approach could be seen with larger groups. This applies also for
total amount of group management data sent as Figure 3 depicts. The full effect on overall
performance is yet to be measured since the project is still going onward and development of the
application continues. The measurements are conducted in the future along the stress testing of
WLAN networks with multiple JamMo applications simulating playing of slider instrument in
different groups. The stress tests will be performed to see how many devices can work together
in the same network with real-time requirements (latency stays below preferred limits). The
results of the future tests will give more detailed information about the bottlenecks of our
protocol and implementation.

ACKNOWLEDGMENT

The authors would like to thank the UMSIC project.

REFERENCES

[1] M. Fredrikson, J. Porras, J. C. Read, P. Paananen, S. S. Elmer and G. Welch. “The
UMSIC project homepage”, [online], www.umsic.org.

[2] The UMSIC Project, “Work Package 1 - Requirements for social situations”, University of
Jyvaskyld, Finland, Deliverable 1.2, 2009.

[3] The UMSIC Project, “Work Package 1 — Software requirements for JamMo”, University of
Jyvaskyld, Finland, Deliverable 1.5, 2009.

[4] The UMSIC Project, “Work Package 2 — Requirements specification of the UMSIC
middleware”, Lappeenranta University of Technology, Finland, Deliverable 2.1, 2009.

[5] J. Laakkonen, T. Kallonen, J. Porras and K. Heikkinen, “System and Architecture
requirements for UMSIC middleware”, Wireless World Research Forum 23rd Meeting,
Beijing, China, 2009.

[6] J. Porras, Petri Hiirsalmi and A. Valtaoja, “Peer-to-Peer Communication Approach for a
Mobile Environment”, Proceedings of the 37" Hawaii International Conference on System
Sciences, Hawaii, USA, 2004.

[7] Nokia, “Nokia N900 mobile computer — Technical specifications”, [online],
http://maemo.nokia.com/n900/specifications.

[8] J. Laakkonen, T. Kallonen, K. Heikkinen and J. Porras, “Introducing UMSIC Middleware
Services”, Proceedings of 6" Seminar of Finnish-Russian University Cooperation in
Telecommunications (FRUCT) Program, Helsinki, Finland, pp. 53—60, 2009.

[9] J. Laakkonen, T. Kallonen, K. Heikkinen and J. Porras, “Usability of Music for Social
Inclusion of Children, System and Architecture Requirements for UMSIC Middleware”,
IEEE Vehicular Technology Magazine, vol. 5, no. 1, pp. 55-61, 2010.

[10] Ren, Yonglin, Boukerche, Azzedine; "A secure group management scheme for mobile ad
hoc networks," 2010 IEEE Symposium on Computers and Communications (ISCC),
pp.429-432, 22-25 June 2010

[11] D. Bottazzi, and A. Corradi, Eds., "Context-Awareness for Impromptu Collaboration in
MANETSs", Proc. Of WONS, pp. 16-25,2005.

95

8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

[12]

[13]

[14]

[15]

[16]

Vieira, M. S. and Rosa, N. S. 2005. A reconfigurable group management middleware
service for wireless sensor networks. In Proceedings of the 3rd international Workshop on
Middleware For Pervasive and Ad-Hoc Computing (Grenoble, France, November 28 -
December 02, 2005).

Maemo.org, “Maemo Diablo Reference Manual for Maemo 4.1” [online], 2009,
http://maemo.org/maemo_release documentation/maemo4.1.x/Maemo_ Diablo Reference
~Manual for maemo 4.1.pdf

Zimmermann, R., Chew, E., Ay, S. A. & Pawar M. “Distributed musical performances:
Architecture and stream management”, Transactions on Multimedia Computing,
Communications, and Applications (TOMCCAP). Volume 4 Issue 2. 2008.

The UMSIC Project, “Work Package 1 - Requirements for music making”, University of
Jyviskyld, Finland, Deliverable 1.1, 2009.

The UMSIC Project, “Work Package 6 — Report of JamMo Extension Development”,
University of Oulu, Finland, Deliverable 6.4, 2010.

96

