
SDL and SystemC co-modelling:
the protocol SDL models Tester

Alexander Stepanov, Irina Lavrovskaya, Valentin Olenev
St. Petersburg State University of Aerospace Instrumentation

190000, 67, Bolshaya Morskaya, St. Petersburg, Russia
Alexander.Stepanov@guap.ru, Irina.Lavrovskaya@guap.ru, Valentin.Olenev@guap.ru

Abstract

Testing of data transfer protocol can be performed by means of simulation and a variety of modeling
languages may be used for it. Among them there are such languages as SDL and SystemC. Moreover an
approach for SDL/SystemC co-modeling has been developed and already applied in practice. This paper
discusses applicability of SDL/SystemC co-modeling for testing of data transfer protocols.

Index Terms: Co-modeling, SystemC, SDL, testing of SDL models.

I. INTRODUCTION

Most networks are organized as a stack of layers where each layer is built upon the one
below. It is done to reduce design complexity. The purpose of each layer is to offer certain
services for the upper layers, shielding those layers from the details of how the offered services
are actually implemented.

Layer X on one machine carries on a conversation with appropriate layer X on another
machine. The rules and conventions used in this conversation are collectively known as the
layer X protocol. Basically, a protocol is an agreement between the communicating parties on
how communication is to proceed [1].

Development of a new protocol specification usually requires a high-level language model.
Benefits of this model consist in getting a state machine of a layer operated by the protocol and
checking of the protocol correctness which can be achieved by simulation of the implemented
model. During this step the model is inserted into a test environment which is responsible for
sending/receiving test data and monitoring results of the simulation. Data generated by the tested
model and a sequence of the model states which were reached during the test are required results.

To achieve the purposes pointed out above two distinct modeling languages can be applied.
The first one is SDL which uses the concept of finite state machine for specification and
description of modeled systems [2]. And the second one is SystemC which is based on C++
language and provides a number of features to implement the flexible and beneficial test
environment [3]. Each of these two languages has a set of advantages and disadvantages and
disadvantages of one language could be compensated by another’s advantages in case of
combined use. An SDL/SystemC comparative analysis and a brief description of SDL/SystemC
co-modeling approach are given in the next chapters.

The main topic of this paper is applicability of pointed the SDL/SystemC co-modeling
approach for data transfer protocol testing. In more details, the paper covers the following
subtopics: the comparison of SDL and SystemC languages, the overview of the SDL/SystemC
co-modeling, an implementation of the protocol SDL models Tester on the basis of the
SDL/SystemC co-modeling and a description of the Tester modules.

Current paper is consecutive continuation of our previous papers in the field of SDL/SystemC
co-modeling. The first paper “SystemC and SDL Co-Modelling Methods” concerns to the

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 198 --

foundation for discussed co-modeling, gives a number of methods for its organization, compares
them and chooses the best one. Then, in the second paper “SystemC and SDL Co-Modelling
Implementation” we make a more detailed analysis of the best method and discuss several ways
for its implementation. In this paper we consider a practical applicability of the SDL/SystemC
co-modeling on the basis of discussed implementations.

II. COMPARISON OF SDL AND SYSTEMC FROM TESTING PURPOSES VIEWPOINT

Purposes of protocol specifications testing require a set of subtasks which should be solved by
the chosen modeling language. So the choice of the using language depends on how a language
fits these requirements. Let’s define the subtasks and consider the SDL and SystemC languages
in accordance with them.

A. Data delivery model
Each data transmission protocol is either reliable or unreliable [1]. In first case the reliability

of the data delivery has to be checked during testing step of the specification design flow. On the
other hand, if the tested protocol is unreliable, estimation of the error rate can be required. So in
both cases the following scheme of model testing can be applied: tested data is sent to one node,
received from another and then they are compared to find any inconsistencies.

In case of the tested protocol provides an error recovery mechanism it is necessary to have a
special error generator in the data transmission channel between the communicating nodes.

SDL language is primarily intended for specification and, consequently, does not contain
enough data generation features. And SystemC based on C++ language provides all possibilities,
which C++ can offer. Therefore, for checking of the data delivery model it is more preferable to
use SystemC.

B. Behavioural model
Behaviour of the tested layer can be represented in terms of finite state machine. This

approach provides an ability to monitor system’s states during operation. So for this task SDL is
much more applicable modeling language in relation to its functionality based on the finite state
machine approach. And SystemC is not an appropriate language in this case.

C. Modeling time
There are two different ways for modeling time managing. The first one is used when the

purpose of testing is to check a layer operation. It does not require any knowledge of time and,
moreover, the best solution is when the modeling time does not change during the whole test.
The second way is used when there is a necessity to check default values of defined layer’s
timeouts. Implementation of this task can be performed by the following method: definite delays
should be inserted into particular points and other parts of the model have to operate without any
delays.

SDL provides a possibility for model operation without delays and also contains a special
timing mechanism. But, unfortunately, the SDL modeling kernel has poor abilities for modeling
time management. As for SystemC it offers a flexible approach for time control but usually
SystemC models does not work without delays. So the most preferable way is to combine both
these languages in the following way: SDL is responsible for modeling time usage and SystemC
is responsible for the modeling time management.

D. Comparison conclusions
To sum up, one of the best solutions for protocol model testing is:

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 199 --

• SystemC is used for implementation of test environment (data traffic generator, analyzer
and channel between nodes) and SystemC modeling kernel is taken for simulation
management;

• the whole protocol model (including description of how the model behaves from the time
point of view) ought to be developed in SDL.

III. OVERVIEW OF SDL/SYSTEMC CO-MODELING APPROACH

The approach for SDL/SystemC co-modeling concerned in this paper assumes to have a
SystemC project, which corresponds to the whole considered model. The whole model contains
the SDL and SystemC parts. Consequently, this approach uses C/C++ representation of the SDL
system [4].

Before starting a description of the discussed approach, we need to introduce general
principles of co-modeling with some requirements and important notions for modeling.

Consider some abstract SDL tool. This SDL tool should meet the following requirements:

• provide a possibility to generate C/C++ code from the implemented model, which will be
the equivalent of the SDL;

• the generated C/C++ code operation should be controlled by some kind of a manager
engine (SDL_kernel);

• the SDL_kernel should provide a number of functions for initialization and simulation of
the SDL model. For the further discussion it is necessary to introduce declarations for two
main functions: SDL_Init(), which is responsible for initialization, and SDL_Simulate(),
which is responsible for simulation of the SDL system, so that one SDL transition is
executed during each call of this function. One SDL transition is a system state change
from one to another.

It should be pointed out that such kind of the SDL tool already exists. For example, all these
features are provided by the IBM Rational SDL Suite [5].

The SDL and SystemC parts connection can be divided into the following stages:

• preparation of the SDL system as a part of the whole model.

• generation of C/C++ code on basis of the created SDL system. The SDL code is not used
hereafter.

• insertion of this C/C++ code to the SDL_kernel.

• preparation of the SystemC part of the model.

• integration of the SDL_kernel with the generated C code into the whole model.

According to this approach, the SystemC model is a master and the SDL model is a slave. So
SystemC provides the mechanisms for modeling.

Co-modelling organization starts after implementation of the SDL and the SystemC parts of
the model. The SystemC project should contain a special thread, which is intended for the SDL
part (SDL_thread). This thread calls the SDL_kernel function SDL_Simulate(). Sensitivity for
SDL_thread can be specified by any acceptable way. The choice of this way depends on
requirements to the modeled system. Initialization of the SDL part of the model requires a call of
the SDL_Init() function.

Fig. 1 shows a simple example of the SDL and SystemC co-modeling. This is an example,
when two nodes interact with each other through the channel, but one node is implemented in
SDL, another node and channel – in SystemC [6].

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 200 --

Figure 1. SDL/SystemC co-modeling example

IV. OVERVIEW OF RELATED STUDIES

Unfortunately there are not many publications in the field of SystemC and SDL co-modeling,
however a few good papers can be found. For example, there is a good publication by M. Haroud
and L. Blazevic which gives superficial comparison of SDL and SystemC languages and
proposes a method for SDL translation into SystemC code [7]. This method is used to translate
the SDL implementation of protocol specification into the SystemC model. It allows using
rigorous protocol modeling and verification provided by SDL and FPGA netlist synthesis
enabled by SystemC. This paper gives a comparison and defines general use of SystemC and
SDL for the protocols modeling. Another paper was published by T. Josawa et al. from Nokia
Research Center [8]. This work is more closely correlated to this study and the proposed
methods for the co-modeling have a lot in common with co-modeling approach described above.
Nokia’s method is illustrated by Fig. 2.

Figure 2. Two approaches for SDL and SystemC co-modeling proposed in Nokia

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 201 --

V. THE PROTOCOL SDL MODELS TESTER

Testing of data transfer protocol models can be organized in the following way. Model of the
protocols or protocol stack are implemented according to the protocol specification in SDL
language by using such SDL tool as described in the previous section. Then the necessary test
environment is implemented in SystemC. And a communication between the SDL model and the
SystemC test environment is established according to the SDL/SystemC co-modeling
mechanism.

Figure 3. General scheme of the protocol SDL models Tester

A general scheme of the protocol SDL models Tester is depicted on the Fig. 3. The Tester
contains three parts: the Test Engine, the Modeling Core and the Medium. Descriptions of all
these modules and interconnections between them are discussed below.

VI. THE MODELING CORE DESCRIPTION

The Modeling Core consists of the testing SDL model, the SDL/SystemC Wrapper and the
Communication Wrapper. Note that implementation of the Communication Wrapper depends on
the SDL model. The features of the SDL model which should be taken into account are a number
of layers of the node and interface descriptions of each layer.

The SDL model of a five-layer protocol stack is depicted on Fig. 4. This protocol stack
contains five layers: Physical Layer (L1), Data Link Layer (L2), Network Layer (L3), Transport
Layer (L4) and Application Layer (L5) [1]. Each Layer of the stack can communicate with
adjacent layers through interfaces. The interface defines which primitive operations and services
the lower layer makes available to the upper one [1]. For example, when the Network Layer uses
a service of the Data Link Layer, in this case the Data Link Layer provides the service and
defines an interface for access to it and the Network Layer is a user of the service.

Models of the Layers from first to fourth are implemented in SDL. The Test Engine can
represent each of five layers described above in accordance with the following rule: when the
Test Engine can communicate with a peer object via a Layer X protocol by consuming a Layer X
service through the interface X it means that the Test Engine is a representation of the Layer X+1
for current stack.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 202 --

Figure 4. The SDL model of five-layer protocol stack and Communication and SDL/SystemC
Wrappers

The discussed stack of protocols includes five interfaces provided by the following layers: the
Medium, the Physical Layer, the Data Link Layer, the Network Layer and the Transport Layer.
The Communication Wrapper can contain a number of special modules called Intermediate
Blocks (IB). Each Intermediate Block addresses to a particular interface, so this IB can be used
in the following cases:

• interconnection between the Test Engine and a layer providing the addressed interface;

• interconnection between a layer using the addressed interface and the Medium;

• interconnection between a user and a provider of the addressed interface.

The interconnection between the Test Engine and a layer providing the addressed interface
should be established when the Test Engine is a consumer of the defined interface. An example
of this case is shown on the Fig. 5. There is the Test Engine which represents the Transport
Layer because it uses the N interface to access to a Network Layer service. It is implemented by
introduction of the IB_N block. This block works as a service provider for the Test Engine and as
a service user for the Network Layer. Note, that all Intermediate Blocks are implemented in
SystemC. The approach of the SDL/SystemC co-modeling organization is discussed above.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 203 --

Network Layer (L3)

Du

Np

Np

Nu

Np

Nu

Test Engine
Node0

Data Link Layer (L2)
Dp

Pu

Dp

Du

Dp

Du

Pp

Pu

Pp

Pu

Medium
Node0

D

IB_N

IB_D

IB_P

- module implemented in SystemC

- module implemented in SDL

Figure 5. Example of the interconnection between the Test Engine, layers of the SDL model and
the Medium through the Communication Wrapper

The interconnection between a layer using the addressed interface and the Medium should be
established when the layer is the lowest layer of the stack and its protocol is used for data
exchange between the nodes. The Medium implements a connection to the peer node and
provides an interface for defined layer. On the Fig. 5 the Data Link Layer is the lowest layer of
the stack and communicates with the Medium by the P interface through the IB_P block. In this
case the data exchange between the nodes is performed by Data Link Layer data units.
Consequently an object of the peer node connected to the Medium should also support the Data
Link Layer protocol.

The interconnection between a user and a provider of the addressed interface leads to two sub
cases:

• both user and provider are represented by layers of the stack;

• a user is represented by the Test Engine and a provider is represented by the Medium.

Two adjacent layers of the SDL stack can communicate with each other in two ways: via SDL
channels or via an Intermediate Block corresponded to an interface of the lower layer. The last
way can be chosen for getting features of an Intermediate Block defined below. This addresses to
the first sub case which is depicted on the Fig. 5. There are the Network Layer and the Data Link
Layer communicating through the IB_D block.

The second sub case is used when there is only one node in the SDL model and the Test
Engine corresponds to the second node of the tested system. So, the Test Engine should send
data to the first (SDL) node directly, i.e. through the Medium. In this case the Test Engine is a
user of communication interface and the Medium is a provider.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 204 --

Each Intermediate Block can provide the following features: managing data flows transmitted
through the Communication Wrapper, parsing transmitted data, making logs and error injection.
Conception of the data management in Intermediate Block is defined above. The parsing of
transmitted data is introduced for getting information about data exchange between two adjacent
layers. Obviously parsing mechanism of each Intermediate Block should be implemented in
accordance with the communication protocol of the correspondent interface and purposes of the
particular test case. And the making logs mechanism is necessary addition to data analysis, so it
is used for monitoring of results. The error injection feature can be introduced for testing of error
detection and/or error correction possibilities of a tested protocol.

A set of key issues are necessary to take into account for implementation of the SDL model.
Firstly, according to the stack structure each layer shall be represented by one SDL block. Then
all required layers should be joined to one SDL system. Each two adjacent layers of one node
can be connected in two ways:

• if purposes of the test does not require getting of Intermediate Block features for
considered connection, two SDL blocks can communicate through SDL channel only;

• else each block should be connected to the SDL system environment [2]. So in this case
both layers will interconnect with an appropriate Intermediate Block.

Note that independently of test purposes the highest and lowest layers of both nodes have to
connect to the SDL environment for communication with the Test Engine and the Medium
correspondently.

VII. THE MEDIUM DESCRIPTION

The Medium module contains a set of channels and the Control block as depicted on the
Fig. 6. Each channel is responsible for connection between two nodes by a particular data
transfer protocol. So each channel provides a service for data transmission and an interface to
access this service. The Control block sets the following features of the using channel:

• delay introduction – to block a transmitted data unit for a predefined time interval;

• error injection – to corrupt a transmitted data unit according to a predefined condition and
value;

• making logs – to write information of particular actions into a specific out stream.

Figure 6. The Medium scheme

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 205 --

An example represented on the Fig. 6 corresponds to the five-layer protocol stack which was
discussed above (see description of Fig. 4). Under requirements of this stack testing the Medium
has to hold four channels to perform a data exchange by protocols of the following layers: the
Physical Layer, the Data Link Layer, the Network Layer and the Transport Layer. So each of
these layers can use the Medium for data transmission and access the Medium service through an
interface correspondent the underlying layer.

VIII. THE TEST ENGINE DESCRIPTION

The Test Engine module is responsible for control of the SDL model simulation. In terms of
this requirement this module performs a number of specific tasks.

The first one is configuration of the SDL model Communication Wrapper before the start of
test sequence. In accordance with the Intermediate Block features described above the Test
Engine defines the transmission mode of each IB, enables/disables the data parsing, the making
logs and the error injection.

The second task is configuration of the Medium. During this phase channel parameters such
as the channel delay and the error injection are defined.

The main task is data exchange with the testing SDL model. If the tested model does not
contain a special traffic generator module the Test Engine represents a certain layer of the tested
stack. In the other words the Test Engine operates in accordance with a protocol of the chosen
layer and uses services of the layer below. The implementation of these entire tasks is a core of
each particular test.

IX. CONCLUSION

The paper gives the description of how to implement testing of data transfer protocols models.
We start with introduction of the network protocols concept. It is based on such notions as
layers, protocols and interfaces. The paper provides the proposal for implementation of the
protocol models in SDL language and the necessary test environment in SystemC language and
discusses the approach of the SDL/SystemC co-modeling.

The main purpose of the paper is the protocol SDL models Tester organization. The Tester
consists of the following modules: the Test Engine, the Modeling Core and the Medium. The
Test Engine is a driver which is responsible for Tester configuration, for launching a test, for
sending and receiving data to/from the Modeling Core and for getting results. The Modeling
Core is a combination of the SDL model of tested protocols and two wrappers. The first wrapper
consists of Intermediate blocks used for access to the SDL model from the Test Engine and the
Medium. The second wrapper is a module providing a communication between the SystemC part
and the SDL part. Finally, the Medium block is a set of channels used by SDL nodes for
interconnection.

Thereby in terms of simulation and modeling the discussed Tester gives the following
abilities:

• representation of testing network layers by means of finite state machine;

• access not to the whole SDL model only but also to certain layers of stack through
appropriate Intermediate Blocks;

• getting all necessary test results by SystemC implementation of the test environment.

The similar concept of the protocol SDL models testing has been already implemented in
practice. Moreover the area of SDL testing leads to a number of advantageous research
directions which can get additional benefits.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 206 --

REFERENCES

[1] A. S. Tanenbaum, “Computer Networks, Fourth Edition”, Prentice Hall, 2003.

[2] International Telecommunication Union, “Recommendation Z.100. Specification and
Description Language (SDL),” Geneva, 2002.

[3] D. Black, J. Donovan, “SystemC: From the Ground Up,” New-York: Springer
Science+Buisness Media, Inc, 2004.

[4] V. Olenev, A. Rabin, A. Stepanov, I. Lavrovskaya, “SystemC and SDL Co-Modelling
Methods,” Proceedings of 6th Seminar of Finnish-Russian University Cooperation in
Telecommunications (FRUCT) Program, pp. 136-140, Saint-Petersburg: Saint-Petersburg
University of Aerospace Instrumentation (SUAI), 2009.

[5] IBM, “SDL Suite and TTCN Suite Help,” IBM Rational SDL and TTCN Suite, 2009.

[6] A. Stepanov, I. Lavrovskaya, V. Olenev, A. Rabin, S. Balandin, M. Gillet, “SystemC and
SDL Co-Modelling Implementation,” Proceedings of 7th Conference of Finnish-Russian
University Cooperation in Telecommunications (FRUCT) Program, pp. 130-137, Saint-
Petersburg: Saint-Petersburg University of Aerospace Instrumentation (SUAI), 2010.

[7] M. Haroud, L. Blazevic, “HW accelerated Ultra Wide Band MAC protocol using SDL and
SystemC,” Fourth IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOMW'06), 2006,

http://fmv.jku.at/papers/HaroudBlazevicBiere-RAWCON04.pdf

[8] T. Jozawa, L. Huang, E. Sakai, S. Takeuchi, M. Kasslin, ”Heterogeneous Co-simulation
with SDL and SystemC for Protocol Modeling,” Nokia Research Center, 2006,
http://research.nokia.com/node/5789.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 207 --

