
Mobile Multi-Blogging in Smart-M3:

Architecture and Scenarios

Diana Zaiceva, Ivan Galov, Aleksandr Sannikov,

Artyom Mezhenin, Dmitry Korzun

Department of Computer Science,

Petrozavodsk State University (PetrSU)

Petrozavodsk, Republic of Karelia, Russia

Emails: maemo-scribo@cs.karelia.ru, dkorzun@cs.karelia.ru

Abstract

The popularity of blogs increases in today’s social networks. The case when a blogger is

presented in several blogs at multiple blog services becomes typical, leading to multi-blogging

activity. This paper analyzes the upcoming challenges of multi-blogging. We propose a smart

space architecture of Scribo, aiming at a new mobile multi-blogging application for Smart-M3. The

application consists of a set of agents (Smart-M3 knowledge processors, KPs). Each KP is responsible

for a narrow function and uses the smart space as a publish-subscribe system. Aggregation of blog

data from multiple blogs and services as well as context information about blogger interests and

status becomes a norm in our architecture. Smart-M3 supports notification mechanisms when one KP

subscribes for some data and another KP notifies the former by publishing the data. Our approach

allows constructing new smart scenarios for bloggers. Distributing blog functions over the set of

KPs also concerns about mobility since a part of processing moves from low-performance mobile

devices of end-users to dedicated mediators.

I. INTRODUCTION

The popularity of blogging increases in today’s social networks. There are many blog

services available for public and private use such as Livejournal [1], WordPress [2], and

Twitter [3]. Many users participate in distributed dynamic discussions on various topics,

forming a social network of bloggers—the blogosphere.

There exist many blog clients, either browser-based or non-browser. They exploit the well-

known client-server paradigm, which allows efficiently read and write messages to a blog at

a given blog service (pure blogging). Non-browser clients seem more appropriate for mobile

blogging [4], [5] due to the specific restrictions of mobile devices: small screen, tiny keyboard,

non-mouse control, low performance, and intermittent network connectivity.

Today more sophisticated scenarios of blogging have become of growing interest. Many

bloggers are presented in several blogs at multiple blog services, and the same blogger can

access many blogs in parallel. The blogosphere grows to a more complex social network.

The boundaries between different blog services should be seamless and multi-blogging ac-

tivity replaces pure blogging. For example, a multi-blogger can search, filter, and aggregate

messages available in the blogosphere [6]. A non-browser mobile multi-blogging client that

evolves in this direction is Scribo [7] (release 0.3x is available for Maemo/MeeGo).

For multi-blogging, however, the client-server paradigm seems inefficient, and another

paradigm is needed for constructing distributed multi-blogging applications. In this paper,

we propose to tackle the problem using the smart spaces paradigm [8] with open source

implementation Smart-M3 [9], [10]. We analyze the upcoming challenges of multi-blogging

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 225 --

and contribute a smart space architecture of Scribo. Our long-term goal is a new mobile

multi-blogging application for smart spaces (smart blogging).

The target application consists of a set of agents (Smart-M3 knowledge processors, KPs).

Each KP is responsible for a narrow function and uses the smart space as a publish-subscribe

system [11]. The smart space is maintained by its semantic information broker (SIB), and all

KPs access the smart space content via the SIB.

Aggregation of blog data from multiple blogs and services as well as context information

about blogger interests and status becomes a basic operation in our smart space architecture.

Smart-M3 supports notification mechanisms when KP subscribes for the data it is interested

in. As a result, the approach allows constructing new scenarios for bloggers. Distributing

functions over the set of KPs makes mobile blogging more efficient since a part of processing

moves from low-performance mobile devices of end-users to dedicated servers. Furthermore,

it potentially accelerates the market. Users can construct own KPs or buy needed KPs as

third-party products. Similarly, users can install KPs either on own machines or rent servers

from a third-party company.

The rest of the paper is organized as follows. Section II introduce the problem of multi-

blogging and defines our architecture of Scribo for the Smart-M3 platform. Section III presents

a scheme of ontology to structure the smart space content for multi-blogging. Section IV

describes the basic functions that the Scribo architecture supports. Section V discusses multi-

blogging scenarios when a client delegates a part of data processing to Scribo mediators.

Section VI summarizes the paper.

II. PROBLEM AND NEW ARCHITECTURE

Scribo up to release 0.3x implements basic blogging functionality as well as multi-blogging

elements [4], [5], [7]. A blogger has access to several blog services where she/he has accounts.

All her/his accounts form user profile, including data on blogger’s friends and groups; profile

is editable from the client side. She/he can read and write posts and comments to own blogs

and to friends. The support of several blog services allows such multi-blogging elements as

(i) message duplication to several blogs or groups, (ii) maintenance of common lists where

blog discussions from multiple blogs are combined, and (iii) filter/sort operations on common

lists for more efficient crawling the blogosphere.

As a non-browser mobile client, Scribo 0.3x has own GUI that takes into account the

capability of mobile devices, Maemo/MeeGo styles, and cross-platform Qt features. Due to

the same reasons the architecture is specific for a standalone thick client. Own database is

used for caching blog content needed in offline modes.

In summary, the idea is to access multiple blogs as if they are written in a single global

blog, duplicate messages to different services, track comments, and participate in cross-

blog discussions. This functionality and its enhancements with more scenarios (based on

data retrieval and aggregation from multiple sources), require complicated data processing.

Obviously, its concentration on a standalone thick client as happening in Scribo 0.3x is

inefficient.

We propose another approach when blog services and their clients are presented in the blo-

gosphere with a better balance in roles. All participants use the same distributed infrastructure

for blogging. Blog services publish content into this infrastructure according to personal user

context (interests, current status, location, etc.). Clients access the content via the infrastructure

as well as they can access context data about other bloggers. The infrastructure keeps the

content in unified format, data is dynamically synchronized with clients and blog services.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 226 --

Processor

G
U

I

DBUS

A
pp

lic
at

io
nl

og
ic

M
es

sa
gi

ng
m

id
dl

ew
ar

e

KP

KP

KP

KP

Processor

Processor

Processor

Pr
od

uc
er

C
on

su
m

er
K

P
K

P

Blog

Blog

Blog

Blog

Blogservice

KP

Blogservice

Blogservice

Mediator

Scriboclient

GlobalSmartSpace
ofpersonalsmartspaces

Multiblog

Blogosphereinfrastructure:

Blogservice

Tw

LiveJournal

LJ

Blogger

Twitter

B
lg

WP

WordPress

Fig. 1. The Smart-M3 architecture of Scribo: blog services, blog clients, and other participants use cooperatively the

blogosphere infrastructure

In addition, the infrastructure provides a mechanism for aggregation of the existing content,

hence producing new multi-blog content available for participants. Note that this processing

is not at the client side.

This distributed version of Scribo follows the known smart space paradigm [8]. A Smart

Space is a virtual, service-centric, multi-user, multi-device, dynamic interaction environment

that applies a shared view of resources. Information conforms to ontological representation

with RDF triples as in semantic web [12]. Participants access information via semantic

information brokers (SIBs), which also support information reasoning. An application consists

of one or more knowledge processors (KPs) running on various user’s devices. KPs act

cooperatively forming a publish/subscribe system [11]. Each KP is an agent using the smart

space as a shared knowledge space. Hence KP produces (insert, update, remove) and/or

consumes (query, subscribe, unsubscribe) information in its smart space [13]. Smart-M3 [9],

[10] is an open source platform implementing smart spaces; it can be used to construct and

experiment with particular smart space applications.

Our Smart-M3 architecture of Scribo is shown in Figure 1. One or more SIBs1 run on

dedicated servers implementing the blogosphere infrastructure as a set of personal smart

spaces (a global blogosphere smart space). The blogosphere smart space connects many blog

services and clients as well as mediators to which certain multi-blog processing is delegated. A

common ontology is used for unified content representation in the smart space, see Section III.

A Scribo client includes two KPs: producer and consumer. The former publishes user-

generated content (blog messages and personal context) from the blogger to the smart space.

The latter subscribes to the content available in the blogosphere and interested to the blogger.

Both KPs run on a device of end-user, i.e., typically mobile. In particular, GUI, application

logic, and ontology middleware can be connected using DBUS for Maemo/MeeGo devices.

Ontological middleware implements internal representation of ontological data and provides

1Current release Smart-M3 0.9.4beta supports one SIB only.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 227 --

generic functions for their processing. Application logic performs simple blog-specific data

processing at the client side, e.g., sorting blog messages. For more efficiency the application

logic can be implemented directly in ontological terms, otherwise transformations between

ontology and internal data structures consume extra resources. Note that Scribo 0.3x uses

object oriented implementation of the application logic.

Communication with a blog service requires a blog processor KP. It is both publisher and

subscriber providing blog content to and from the smart space. Note that a blog service can

be served with several blog processors, e.g., one accesses the service using API and another

applies RSS feeds. Typically, such a KP runs on a dedicated machine. The latter may belong

to the user (e.g., stationary server at home) or be provided by a third-party organization.

The concurrent KP activity is orchestrated with a notification model, which we develop

on top of the Smart-M3 subscription [13] and using the smart space context theory [14].

A blogger publishes the user profile in the smart space. If she/he has an account at a blog

service then the blog processor subscribes for user presence and other context information of

that blogger. When the blogger appears online (Scribo client is running), the blog processor

publishes blog content to the smart space according to current user interests.

When the blogger is crawling the blogosphere, the client publishes notifications what blogs

she/he is interested in. Notifications can be either explicit (e.g., the user clicks “update”)

or implicit (e.g., when the user reads a post then Scribo generates notification for updating

comments for this post).

When a notification has been processed the data is removed from the smart space. This

model aims in efficient use of storage space: the smart space is not a large cache of the whole

content from all blog services. Only a certain part of the blogosphere is stored. The part is

defined by user interests and context; the notification model drives the synchronization.

For complicated multi-blog scenarios the architecture provides multi-blog mediator KPs.

They can run on machines different from end-user devices. A client may delegate the com-

plicated processing to mediators. As a blog processor a mediator subscribes for user profile

and context data. In particular, it can know which blogs the user currently is working with

or what context is formed by the currently read messages. In fact, mediators can be used to

implement blog aggregators and filters, known useful mechanisms for multi-blogging [6].

From existing context knowledge the mediator can derive and publish new knowledge.

Consider some examples. If the blogger is reading a post then the mediator notifies blog pro-

cessors for searching similar posts in their blog services. The found posts are published in the

smart space, and the client can retrieve them. In another example scenario, the blogger notifies

that she/he is interested in searching images with certain keywords in their descriptions. The

blog processors find and collect such messages with images in the smart space. The mediator

aggregates this collection to a virtual blog message of all images from the found messages.

The blogger can edit the virtual message as a draft and then she/he publishes the result at a

blog service (the virtual message becomes a real post or comment).

III. ONTOLOGY

We plan to apply the Smart-M3 platform for implementing the blogosphere infrastructure.

Smart-M3 provides SIB for storing and accessing smart space content using RDF triples. This

section introduces the ontology we developed for Smart-M3 Scribo application. We prefer to

describe the ontology in high-level OWL terms instead of low-level RDF triples. Later OWL

descriptions can be directly used by SmartSlog tool [13] to generate KP code automatically.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 228 --

Profile Account Post
hasAccount

Comment

hasFriend

hasPost hasComment

hasComment

Fig. 2. The high-level ontology of Scribo

There are four basic OWL classes: profile, account, post, and comment. Figure 2 shows

the relations. An individual (object) of class Profile can have several accounts. An account

corresponds to a blog (a set of discussions), where each discussion is started with a post.

A post can have comments and any comment can be commented as well, i.e. any message,

either post or comment, can have other comments.

Class Profile is the key class; it represents a user profile where all accounts of the user

are combined. Accounts can be at different blog services. Thus the class naturally supports

the concept of multi-blogging. Profile has property hasAccount that links it with a concrete

account (individual of account). User profile is identified with ID.

Class Account represents user’s account at a blog service. An individual stores standard

data properties: nickname, password or password hash, type of the blog service, personal

information (date of birth, city, etc.), and groups where the account participates. Therefore,

a blog processor KP can login to the blog service and access its data.

An Account-individual has property hasFriend to link with all user’s friends at the blog

service. A friend is also represented as an Account-individual but it contains less information

about the person. Class Account also has property hasPost to link to blog discussions of

the blogger—every post starts a separate discussion. The set of all instance of this property

defines user’s blog at the given service.

Class Post describes all data related to a post. One individual of this class represents one

post, which contains such data as message title and text, date, tags and other miscellaneous

attributes (depending on the blog service). Every post can be commented, thus every individual

has property hasComment to link post with its comment.

Class Comment represents a comment message to a post or another comment. It has

similar properties as class Post: title, text, date, tags, etc. Property hasComment links a

comment with its comments.

Recently we work on representation of our notification model in the ontology. There should

be class Notification. Its individuals contain notification data. Certain KPs can subscribe to

them and perform some actions when the data are updated. Details of this mechanism will

be elaborated later on the base of usecase scenarios; it is an important direction of our future

research.

IV. BASIC FUNCTIONS

In this section we discuss the basic functions that the Smart-M3 architecture of Scribo

supports. Implementation of this functionality is a target of our future research. The key

element is the notification model; it is a base for cooperation between different KPs. In turn,

the model is on top of Smart-M3 publish/subscribe operations. A function changes the smart

space content, hence providing notifications to KPs that subscribed to these data. Note that

the current version of Smart-M3 (0.9.4beta) does not provide security mechanisms, and we

do not discuss security in this paper.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 229 --

Session initialization and closing: When a Scribo client starts, actual user profile data

are published in the smart space. The profile is used to identify user’s accounts on blog

services. This is a notification for the blog processors to know that the blogger is presented

online in the blogosphere. They login on behalf of the user to the blog services and start

publishing blog content into the smart space. In addition, the client publishes user context

(personal interests and current status).
Note that the local storage is primary. The smart space keeps a copy of user profile and

context. At first time the default values are provided. Then they evolve in accordance with

user activity. The client updates the smart space when needed.

When a client has been closed, it clears user’s private data in the smart space. Only a small

part of the personal content is presented in there. It is enough for other KPs to know that

the blogger is offline; they continue their subscription for the data (waiting for blogger’s next

session).
Account management: The user can modify her/his profile via the smart space: editing,

adding, deleting, and switching on/off accounts. It requires direct user actions from the client

side. Switching off means that the account is temporarily in out of blogger’s interests. Blog

processors are notified (and then react accordingly) since they are subscribed for these data.
In most cases, when the account data are changed at the client side they must be also updated

at the blog service. When a client exits its smart space such private data as login/password

are removed from the space.
Context management: It is either directly initiated by user or some data are published

by the application implicitly. User-initiated queries form explicit notification; they define

temporal user’s interests. For example,

• Find all duplicates of this message.

• Make a draft message collected all images in blogs of friends of mine and related to

“N900” and “Maemo”.

• Aggregate into a blog the most popular discussions on “mobile applications” available

on Livejournal and Wordpress.

Note that global user preferences and interests are a part of user profile, hence they are

published in the initialization phase and then updated when needed.

Indirect context updates happen in background as logical inference from user activity.

Examples, which are common for many context-aware applications, include user’s current

location (coordinates, nearest city name, country, etc.), type of current activity (business

meeting, walking, lunch, etc.), and short-term plans (upcoming events form user’s calendar).

Blogging-related contexts are also possible.

• The user is reading a blog message. The context is a semantic description of the message

(e.g., a set of keywords).

• History of user-initiated queries or of blogs the user has read.

• Latest commenters to user’s messages.

• Friends of the user who currently are online.

Sending and receiving messages: User writes a message locally. Then she/he chooses

blogs and groups which to send the message to, i.e., the duplication is allowed. The client

publishes the message as post or comment individuals. Every appropriate blog processor

discovers the fact of publishing (notification) because of the subscription and sends the

message to its blog service.

User-initiated and indirect context updates are notifications to blog processors to receive

some blog messages from their services and publish the messages in the smart space. Conse-

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 230 --

quently, it notifies the client that there is available content. The client gets the messages and

visualizes them to the user. Note that some messages can be published by Scribo mediators.

More complicated scenarios happen for comments. While the user is reading a message its

succeeding comments of the discussion thread (post, its comment, comment to the comment,

and so on) are published by the blog processors and become available to the client.

Friends management: User profile includes friends of the blogger. The list of friends is

available at the client side and can be updated at appropriate blog serves via the smart space.

This information is also a part of user context and can be utilized in notifications. Blog

processors receives and publishes blog messages whose author is a friend. If the blogger

frequently reads messages of another blogger, the latter can be advices to the former as a

candidate to a friend.

V. MEDIATORS FOR ENHANCED MULTI-BLOGGING

A KP mediator aims at extra multi-blogging functionality (see Fig. 1 in Section II). Based

on the available user context in the smart space, a mediator publishes notifications to for

querying new content from blog services as well as derives new knowledge from the existing

one. Resultant knowledge is available both for the client and its blog processors. They can

utilize them directly (providing to the user) or for new notifications.

In fact, this architectural solution supports delegation of some processing from the client

side to dedicated servers. Let us explain the idea on the following examples.

Prediction and recommendation: The smart space contains user’s current interests. For

instance, the blogger is a soccer fan. Then there is a mediator that queries blog processors

for the newest soccer blogs, possibly aggregates them, and publishes in the smart space as

a recommendation for reading. In the aggregation case, the mediator forms a virtual blog

message (available only in the smart space). The blogger can edit it and publish at her/his

blogs. A close scenario that uses short-term context is the following. While a blogger is

reading a message, its mediator searches similar messages in other blogs.

As a result, the smart space provides the blogger not only with separate blog messages but

shows more global scope and relations. Note that this type of searching is essentially semantic.

Keywords, tags, and some other knows techniques are appropriate here. Some details about

blog aggregators and filters can be found in [6].

Cooperation of personal smart spaces: Several bloggers can share content of their

personal smart spaces. This is a way for constructing more complex smart spaces. For example,

users A and B published their profiles, which contains data on their accounts and friends. If

B is a friend of B then the mediator can derive new knowledge by linking the account of A

to the account of B as shown in Figure 3.

Therefore, A’s and B’s personal smart spaces are combined. They can be used indepen-

dently (as before) or provide a base for further enhanced scenarios. In the former case the

smart space storage is optimized, since there is no extra Account-individual friend account.
In the latter case, the user context of A is extended with the context of B, e.g., B is now

online or offline.

VI. CONCLUSION

This paper considered the problem of constructing a multi-blogging application. It originally

appeared in our project Scribo [4], [5], [7], where a non-browser mobile multi-blogging

application is developed for Maemo/MeeGo. Tackling this problem with the pure client-

server paradigm poses difficult technical problems. We believe that an efficient solution can

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 231 --

Profile
user A

Profile
user B

Account
user A

Account
user B

Acount
friend account

hasAccount

hasAccount

hasFriend

hasFriend

Fig. 3. Linking the account of A to the account of B

be realized using the smart spaces paradigm. We started the research project to proof this

concept; a new version of Scribo (Smart Scribo) will be developed.

Our key recent result is the new architecture of Scribo. It will be implemented later with

the Smart-M3 platform. The architecture supports blogging in a distributed way: many blog-

gers, many blogs, many blog services. Moreover, it introduces other participants (mediators);

they analyze multi-blog data to produce new content. Other participants may delegate extra

processing to them. The cooperation between participants is based on our notification model

that is on top of smart space publish/subscribe abstractions. Utilization of this model leads

to various smart scenarios, which we presented and discussed.

Our approach defines of a new class of distributed applications for mobile multi-blogging.

It is a promising base for new useful blogging scenarios where the aggregate use of multiple

blogs as well as of multiple user contexts and preferences are possible. Finally note that our

architecture also reduces the load on mobile devices of the end users.

ACKNOWLEDGMENT

Authors would like to thank Finnish-Russian University Cooperation in Telecommunica-

tions (FRUCT) program for the provided support and R&D infrastructure. The special thanks

to Sergey Balandin for providing feedback and guidance.

REFERENCES

[1] “Livejournal: Discover global communities of friends who share your unique passions and interests,” Sep. 2010.

[Online]. Available: http://www.livejournal.com/

[2] “Wordpress: Blog tool and publishing platform,” Sep. 2010. [Online]. Available: http://wordpress.org/

[3] “Twitter: The best way to discover what’s new in your world,” Sep. 2010. [Online]. Available: http://twitter.com/

[4] D. Zaiceva, A. Mezhenin, A. Sannikov, K. Germanov, and D. Korzun, “Scribo: A livejournal client for the maemo 5

platform,” in Proc. 7th Conf. of Open Innovations Framework Program FRUCT, Apr. 2010, pp. 155–159.

[5] A. Mezhenin, A. Sannikov, D. Zaiceva, K. Germanov, D. Korzun, S. Balandin, and T. Turenko, “Scribo: Multi-blog

client for Maemo/MeeGo platform,” in Proc. Int’l Conf. on Artificial Intelligence and Systems, Sep. 2010.

[6] I. Rose, R. Murty, P. Pietzuch, J. Ledlie, M. Roussopoulos, and M. Welsh, “Cobra: Content-based filtering and

aggregation of blogs and RSS feeds,” in Proc. 4th USENIX Symp. on Networked Systems Design & Implementation

(NSDI), Apr. 2007, pp. 29–42. [Online]. Available: http://www.usenix.org/events/nsdi07/tech/rose.html

[7] A. Sannikov, D. Zaiceva, A. Mezhenin, and D. Korzun, “Multi-blogging with scribo 0.3x,” in Proc. 8th Conf. of Open

Innovations Framework Program FRUCT, Nov. 2010.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 232 --

[8] I. Oliver, J. Honkola, and J. Ziegler, “Dynamic, localised space based semantic webs,” in Proc. IADIS Int’l Conf.

WWW/Internet 2008. IADIS Press, Oct. 2008, pp. 426–431.

[9] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3 information sharing platform,” in The 1st Int’l Workshop

on Semantic Interoperability for Smart Spaces (SISS 2010) in conjunction with IEEE ISCC 2010, Jun. 2010.

[10] “Download Smart-M3 software for free at SourceForge.net,” Release 0.9.4beta, Sep. 2010. [Online]. Available:

http://sourceforge.net/projects/smart-m3/

[11] R. Baldoni, M. Contenti, and A. Virgillito, “The evolution of publish/subscribe communication systems,” in Future

Directions in Distributed Computing, ser. Lecture Notes in Computer Science, vol. 2584. Springer, 2003, pp. 137–141.

[12] D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, Eds., Spinning the semantic web : bringing the World Wide

Web to its full potential. The MIT Press, 2005.

[13] D. Korzun, A. Lomov, P. Vanag, J. Honkola, and S. Balandin, “Generating modest high-level ontology libraries for

Smart-M3,” in Proc. 4th Int’l Conf. Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM

2010), Oct. 2010.

[14] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware systems,” Int. J. Ad Hoc Ubiquitous Comput.,

vol. 2, no. 4, pp. 263–277, 2007.

__________________8TH CONFERENCE OF FINNISH-RUSSIAN UNIVERSITY COOPERATION IN TELECOMMUNICATIONS

-- 233 --

