9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

Model Checking Approach to the Correctness
Proof of Complex Systems

Marina M. Alekseeva, Ekaterina A. Dashkova
Yaroslavl Demidov State University
150000 Yaroslavl, Sovetskaya 14, Russia
{marya_87, dea.yar}@mail.ru

Abstract

Very often the question of efficiency in terms of execution time memory usage, or power
consumption of the dedicated hardware/software systems is of utmost interest that is why different
variants of algorithms are developed. In many situations the original algorithm is modified to improve
its efficiency in terms like power consumption or memory consumption which were not in the focus
of the original algorithm. For all this modifications it is crucial that functionality and correctness of
the original algorithm is preserved [1].

A lot of systems increasingly applying embedded software solutions to gain flexibility and cost-
efficiency. One of the various approaches toward the correctness of systems is a formal verification
technique which allows for desired behavioral properties of a given system to be verified. This
technique nowadays is well known as model checking.Model is expected to satisfy desirable properties.

Verification is the analysis of properties of all admissible program results through formal
evidence for the presence of required properties. The basic idea of verifying the program is to
formally prove the correspondence between the programming language and the specification of the
problem.

Program and specification describe the same problem using different languages. Specification
languages are purely declarative, human-centered. Imperative programming languages are more
focused on executing on the computing device. Therefore less natural for men.

Likewise, this technique is an excellent debugging instrument. From the standpoint of program-
ming technology verification enables to obtain a better strategy for debugging programs.

Index Terms: Verification, Automata-based programming, Complex systems.

I. INTRODUCTION

Correctness of Information and Communication Technology (ICT) systems [2] is the back-
ground for their safety. Errors could be catastrophic. The fatal defects in the control software
are very dangerous and the number of defects grows exponentially with the number of
interacting system components. Day after day ICT systems are becoming more complex.

ICT systems are universal and the reliability of ICT systems is the main point in the
system design process. The key instrument for design process are verification techniques
(fig.1). The features which are verified could be taken from specification. They are usually
the main properties of the systems. They should be correct which means react adequate for any
command. The accurate modeling of systems often leads to the discovery of incompleteness,
ambiguities, and inconsistencies in informal system specifications.

Such problems are usually discovered at later stage of the design. The system models are
accompanied by algorithms that systematically explore all states of the system model. This
provides the basis for a whole range of verification techniques as model checking.




9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

sgste
spee aﬁcurmﬂ

_T_

{ Properiies
o) .

T

Verfication

(Eﬂg{sj _."’atmb @; bugs _fou;a_dj:}

Fig. 1. The process of verification

IT. MAIN PART
A. Model-checking

Model checking [3] is one of various verification techniques. It explores all possible system
states in a rude manner.

The system model is usually automatically generated from a model description that is
specified in some appropriate dialect of programming or hardware description languages.

The property specification prescribes how the system behaves. All relevant system states are
checked whether they satisfy the desired property or not (fig.2). Models of systems describe
the behavior of systems in an accurate and unambiguous way. They are mostly expressed
using finite-state automata, consisting of a finite set of states and a set of transitions. In
order to improve the quality of the model, a simulation prior to the model checking can
take place. Simulation can be used effectively to get rid of the simpler category of modeling
errors. Eliminating these simpler errors before any form of thorough checking takes place
may reduce the costly and time-consuming verification effort.

Model checking has been successfully applied to several ICT systems.

B. Automata-based programming

Automata-based programming can be used in several types of programming systems [4]:

e transforming systems (compilers, archivators). Finite automata in programming traditionally
used in design of compilers. In this situation automata is understood as some calculating
feature which has an input line and output line.

e reactive systems (telecommunication systems and systems of control and managing of
physical devices). In this case the automata-based programming solves the problem of logic
programming. In this case automaton is a device that has several parallel input lines (often
binary), on which in real time the signals from the environment is coming. Processing such
kind of signals, automaton is forming values for several parallel outputs.




9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

i

{r&guﬁmm&nf.s-)

—— e
SER—

Formalhizing

—

(_E?;-:.-per;!;.'ﬂ
_specification

e S

Model Checking

Fig. 2. The process of model-checking

So, the usefulness of the automata-based approach can be characterized with the combination
of the words ”complex behavior”. For such kind of systems it is very important that automata-
based approach separates the description of logic of behavior and semantics. This feature
makes automata description of complex behavior clear and understandable.

Transition systems are often used in computer science (semantical models for a broad
range of high-level formalisms for concurrent systems, such as process algebras, Petri Nets,
statecharts).They are a fundamental model for modeling software and hardware systems.

Transition system is defined as 7'S. TS is a tuple (S, Act,—, I, AP, L) where

e S is a set of states,

e Act is a set of actions,

e —C S x Act x S is a transition relation,

e I C S is a set of initial states,

e AP is a set of atomic propositions, and

oL :S — 247 is a labeling function.

TS is called finite if S, Act, and AP are finite.

Consider the following example (fig.3). The transition system in fig.3 is a schematic design
of an automaton. The automaton can either deliver tea or coffee. States are represented by
ovals and transitions by labeled edges. Initial states are arrow without source.

The state space is

S = {pay, select, tea, cof fee}.

The set of initial states consists of only one state, i.e., I = {pay}.

The action insert coin denotes the insertion of a coin, while the automaton actions get tea
and get coffee denote the delivery of tea and coffee. Transitions of which the action label is
not of further interest here are all denoted by the distinguished action symbol 7. We have:

Act = {insert_coin, get_tea, get_cof fee, T}.

Automaton is represented by two locations start and select. Notes that after the insertion
of a coin, the automaton nondeterministically choose to provide either coffee or tea.




9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

T
pay |
get_tea B (Ll get_coffee
insert _coin

L \
‘.r"'__ T .-"_"\-\..I
{tea }T—{geleca—-{goﬁe?)

Fig. 3. A simple transition system

III. CONCLUSION

Theory of programming even in the 1968 openly accepted the cricis of software development.
The main symptom of this crisis is disability of the developers to provide the main feature
of the software: its correctness. Theoreticians and practitioners of software underline that the
crisis of methods of the development of software shows mainly during the design of the
systems with complex behavior and automata-based approach can deal with this problem.
That is why it is the answer for the most up-to date problems of the software development
industry. The predictions show [4] that the area of applying automata-based programming
will be expand and this technology will be develop. A new models, notations and instruments
will appear in the foreseeable future.

ACKNOWLEDGMENT

The following scientific advisers supported us by using (sometimes very) preliminary
versions of this article: Valery A. Sokolov (Yaroslavl, Russia), Dmitry U. Chaly (Yaroslavl,
Russia), Egor V. Kuzmin (Yaroslavl, Russia).

The authors would also like to thank the dean of Yaroslavl Demidov State University
Computer Science Department P.G. Parfenov for interest and support of this project and the
head of scientific-educational center ”Center of Innovation Programming” Professor V.A.
Sokolov for helpful advices. This work would be developed and extended in the future.

REFERENCES

[1] Anikeev M., Madlener E., Schlosser A., Huss S.A., Walter C., ”Automated Correctness Proof of Algorithm Variants in
Elliptic Curve Criptography” Modeling and Analysis of Information Systems, pp. 7-16, 2010.

[2] Baier Christel, Katoen Joost-Pieter. "Principles of Model Checking,” The MIT Press, Cambridge, Massachusetts, London,
England, 2008.

[3] Egor V. Kuzmin, “Introduction to the theory of mathematical processes and structures,” Yaroslavl Demidov State
University, Yaroslavl, Russia, 2001.

[4] N.I. Polikarpova, A.A. Shalyto, ”Automata-based programming” Saint-Petersburg State University of Informatic
Technologies, Mechanics and Optic, Saint-Petersburg, Russia, 2009.




