
Investigation of flow graphs optimization
methods used in optimizing compilers

Eugene Gavrin
SUAI

Eugene.A.Gavrin@hotmail.com

Abstract

This paper describes the flow graphs optimization techniques for use in a universal optimizing
compiler. The following methods are comprehensive and can be used for optimizing compilation of
most programming languages.

Index Terms: Compiler backend, optimizations, data flow graph, control flow graph.

I. INTRODUCTION

As our devices get smarter, they contain more semiconductors and draw more power.
It’s also more difficult to write code that can efficiently utilize these multiple and
sometimes multicore chips. A programmer can adapt its code to run on the specific
hardware, or use a compiler that translates the code into chip-oriented assembly that the
chip can process. But developing custom code for each platform is expensive, time-
consuming and limited to the specific device. Most chipmakers had to develop compilers
for each chip. While the process can take much time, the compiler can then be used for
the chip in a variety of devices. But right after the new will be created this process needs
to be repeated. To avoid this it is needed to create a universal compiler backend, which
can be simply adapted to the specific architecture. This study is the first step towards
developing the universal compiler backend.

II. MAIN PART

The most compilers have the “classic” structure, and comprise the following parts.
The source program is analyzed by the parser to produce an intermediate representation
(IR) (abstract syntax tree or flow graphs), which is often called the abstract program [3].
Then the compiler performs a set of passes for optimization of intermediate
representation. The abstract program is further translated by the code generator into a
program in assembly language. A program in assembly language is very close to the
target program, except that, instead of concrete cell addresses, it contains labels, each
label representing some (yet) unknown address. The program in assembly language is
then processed by the assembler, which replaces the entire label with concrete addresses,
thereby producing the target machine code program. After that the compiler performs set
of peephole optimizations to improve generated assembly.

 Every new compiler is created mostly according to this structure. And its creation can
be simplified by a standardized and extendable framework that implements some
compiler stages: program analysis, IR optimizations, reconfigurable code generation and
software correctness check.

___ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

-- 41 --

A. Internal representation
As mentioned above, the compiler is divided into multiple steps, and to provide

collaboration these steps is necessary to determine the internal and intermediate
representation/language of the source program [5]. Intermediate representation is
necessary in order to provide an interaction between multiple stages of the compiler - a
concrete format is requires a separate research and will be made later. And the internal
representation depends on the specific objectives of the particular stage. Currently is
needed to select the representation suitable for a platform-independent of high-level
program optimizations.

When parsing a program written in a high-level language the source representation is
converted into a representation form suitable for the processing. The right internal
representation simplifies the source code analysis and implementation of various code
transformations. The choice of form of internal representation strongly affects the
transformation methods, their efficiency and complexity, which can significantly affect
the time of compilation.

The internal representation must meet certain requirements:
• Ease of implementation of transformations;
• Explicit branching representation (cycles and conditions);
• Store the data dependency and control information;
• Store the useful properties of the original program;

Most modern compilers for this purpose use the control flow graph that contains
information about data dependence and control. In a control flow graph each node in the
graph represents a basic statement block, i.e. a straight-line piece of code without any
jumps or jump targets. Each statement block has a certain execution time, a necessary
attribute for estimating the execution time of the program. Directed edges are used to
represent jumps in the control flow, jump targets start a block, and jumps end a block.
There are, in most representations, two specially designated blocks: the entry block,
through which control enters into the flow graph, and the exit block, through which all
control flow leaves. And each possible execution path of the module has a corresponding
path from the entry to the exit node of the graph.

B. Program transformations
The program transformation is any action that changes the internal representation of

the program. Transformations can be structural, optimizing and debug. Structural are
designed to enhance self-documenting and readability of the program. Optimizing are
aimed to improve program effectiveness – to reduce the time of execution and memory
consumption. And the transformations that build the debug version.

The optimizing transformations in the compiler are divided on three steps:
1. Determine part of the program you need to optimize and determine the suitable

transformation;
2. Check that the transformation does not change the result of program execution.
3. Transformation;

The transformation is valid only if the original and the modified programs give the
same output for different runs under the same input.

___ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

-- 42 --

C. Platform independent optimizations
Optimization of the program is divided into two stages: a high-level global

optimization, which is platform-independent and is universal for most programming
languages, and low-level peephole optimization, which takes place after the generation of
platform oriented assembly. The possible methods of platform-oriented optimizations
will leave behind a side, and consider the optimization methods are universal for the any
compiler.

Examples of optimizing transformations:
• Constant folding;
• Sub-expression evaluation;
• Strength reduction;
• Null sequences;
• Combine operators;
• Loop optimizations;
• Branch Elimination;

Constant folding is used to reduce redundancy. Constant values are computed at
compile time and are passed to the program, which removes unnecessary arithmetic
operations. There is also a subspecies called "Algebraic simplification", which eliminates
unnecessary or incorrect arithmetic identities.

Direct conversion is replacement of slow operations with faster ones. For example, on
many architectures, integer multiply instructions are slower than other instructions such
as integer add and shift, and multiply expressions with power-of-two constant
multiplicands and other bit patterns can be replaced with faster instructions. As well as
integer divide is a relatively expensive instruction. Power-of-two integer modulus
expressions can be replaced with conditional and shift instructions to avoid the divide
and multiply and increase run-time performance.

Dead code elimination is reducing the size of the program by eliminating the sequence
of operator blocks that is not achievable on any execution path in the program or that
does not affect the program (e.g. dead stores). Such blocks can occur as a result of
previous optimizations, debugging, or frequent changes in the program by many
programmers.

An expression is a Common Sub Expression (CSE) if the expression was previously
computed and the values of the operands have not changed since the previous
computation. Recomputing the expression can be eliminated by using the value of the
previous computation.

A loop containing a loop-invariant IF statement can be transformed into an IF
statement containing two loops.

Loop overhead can be reduced by reducing the number of iterations and replicating
the body of the loop.

Loop-invariant expressions can be hoisted out of loops, thus improving run-time
performance by executing the expression only once rather than do it at each iteration.

Some same-conditional loops can be fused into one loop to reduce loop overhead and
improve run-time performance. Although loop fusion reduces loop overhead, it does not
always improve run-time performance – some architecture may provide better
performance if two arrays are initialized in separate loops, rather than initializing both
arrays simultaneously in one loop.

___ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

-- 43 --

III. CONCLUSION

Described optimization methods should be applied to the original program until the
program will no longer change its state. These methods can help create a software
optimization and analysis framework that is going to be good basis for the reconfigurable
compiler. It is understandable that it is possible to create a framework for creation of
reconfigurable compiler. It is also possible to simplify compiler creation by providing
general parts such as: parsing, analysis and optimization. The compiler remains two
modules that can demand reconfiguration: parsing the source program and platform-
oriented code generation. The task of parsing the source code is well known, as the
methods of its solutions. The question remains open the creation reconfigurable code
generator. Therefore, in future work, is planned to explore the methods of reconfigurable
code generation and peephole optimizations currently exist and which ones might apply
in practice.

REFERENCES

[1] Alfred Aho, Ravi Sethi, and Jeffrey Ullman, “Compilers: Principles, Techniques, and Tools”
[2] Robert Morgan, “Building an Optimizing Compiler”
[3] James Holmes, “Building Your Own Compiler with C++”
[4] Utpal Banerjee, “Loop Transformations for Restructuring Compilers”
[5] W. A. Barrett, "An ILOC Simulator", 2007, paraphrasing Keith Cooper and Linda Torczon, "Engineering a

Compiler", Morgan Kaufmann, 2004. ISBN 1-55860-698-X.
[6] Microsoft Research, “Phoenix project”, http://research.microsoft.com/en-us/collaboration/focus/cs/phoenix.aspx

___ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

-- 44 --

