
RMAP Protocol SystemC Model: Detailed 
Description and Modelling Features 

 
Nikita Martynov 

St-Petersburg University of Aerospace Instrumentation 
190000, St-Petersburg, Bolshaya Morskaya 67, Russia 

Nikita.Martynov@guap.ru 

Abstract 

Modelling becomes more and more important in the communication protocols development 
flow. It is a powerful tool in the hands of developers. By modelling the detailed validation and 
verification of the project could be done. It is applicable from the conceptual design stage to the 
physical implementation of the final product. Modelling helps to find the weak spots of standards 
and fix them. Also it becomes possible to experiment by creating combinations of several specified 
standards models that superpose in single executable system model. 

This article introduce to modelling itself and to modelling by means of SystemC. The 
outcomes which were obtained by me during RMAP protocol modelling are represented in the 
article. These comprise detailed description and organization of RMAP transport layer protocol 
SystemC model, application operating over the protocol and various challenges which appear 
during design and testing of such kind of systems are considered also. One of paragraphs tells 
about different protocol models combining as possibility to check consistency and test 
communication of protocols, for example of SpaceWire protocol stack which covers first three 
layers of OSI model including network layer, and transport layer RMAP model. The model of 
SpaceWire protocol stack was designed by our team also. 

SpaceWire is a perspective and fast-developing communication standard. Nowadays there 
are number of large companies take part in the development process. The standard is supported 
and implemented to modern spacecrafts by European Space Agency, NASA (USA) and JAXA 
(Japan). RMAP – transport layer protocol which was developed for joint operation with the 
SpaceWire standard. 

Index Terms: Modelling, protocols, SystemC, RMAP, SpaceWire.

I. INTRODUCTION 

Modelling takes an important role in the development process as a solution to 
perform detailed check of the specification and verification of the project to the stage of 
physical implementation of the final product. This allows detecting and fixing errors on 
the project specification stage, so it could decrease future improvement costs and it 
requires less time for corrections make. Modern modelling methods are very flexible. 
And it allows spending less efforts, time and money. Combining of a number of specified 
protocols into a single model, joint performance checking, advantages and disadvantages 
identifying – all these can be allowed by modelling use [1, 2]. 

Depending on pursued aims and expected modelling results different models are 
designed by various development tools. So by means of C/C++ high level abstraction 
behavioral models are designed which define basic components of the system and theirs 
mutual interaction. 

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 101 ----------------------------------------------------------------------



During functional modelling, languages of hardware description as VHDL and 
Verilog are used. By means of them RTL-models (Register Transfer Level models) are 
designed. RTL-model is close to hardware implementation including all essential 
characteristics for the system testing before hardware implementation. 

Generally behavioral model is designed firstly and after RTL-model is developed 
with it helps. There aren’t possible to reuse already developed behavioral model during 
designing RTL-model because of inconsistencies of C/C++ high-level language and 
VHDL, Verilog hardware description languages. This demands extra time for the model 
redevelopment but by means of the lower-level language. SystemC modelling language 
based on C/C++ language and provides essential possibilities for lower-level models 
implementation, therefore SystemC helps to avoid wastes of time that mentioned 
thereinbefore [1, 5, 6, 7]. 

SystemC was used for the modelling of RMAP transport layer protocol which is 
considered in this article. 

II. MAIN PART 

A. SystemC modelling  

SystemC model consist of some main components: ports, interfaces, processes (term 
process is defined as SC_THREAD in this article), channels and internal data [6, 7].  

Fundamental conception of SystemC modelling consists of several basic 
paradigms [5]: 

concurrency — possibility of simple element parallel operation;  
connectivity — information exchange support between blocks by means of 
interfaces, ports, channels and hardware signals; 
reactivity — event mechanism realization, then models respond to appointed 
system events; 
real time performance — possibility of systems modelling with real time 
slices.  

There are several SystemC model types: clock-oriented, event-oriented and models 
which combine conception of previous two types.  

Event-oriented models – these are models in which the appropriate process receives 
control after specified sc_event occurred. If the event didn’t occur, the process will stay 
in a waiting state. If the event reoccurs, the appropriate process will regain control and 
begin to execute. The real quantity of control receiving by concrete process depends on 
specified event frequency occurrence [8].  

Sc_event principal feature is an absence of a value and duration of time which is 
depicted on the diagram at fig. 1. The diagram shows an example of sc_event starting in 
three different instants of time. 

 
Fig.1. Time diagram of sc_event starting 

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 102 ----------------------------------------------------------------------



Clock-oriented models – these are models in which the appropriate process receives 
control every time by getting a positive or negative edge of the sc_clock signal. The 
clock cycle (depict at fig. 2) and a modelling time value manipulates with the frequency 
of process control receiving and quantity of the process executions [8]. 

Thus very convenient to use clock signal for control transfer then some actions have 
to be performed throughout whole modelling time with constant time domains. 

 
Fig.2. Time diagram of the sc_clock signal 

Two models types comparison. These two models types obviously have essential 
differences. The basic difference is that in the event-oriented models the appropriate 
process receives control only then it is necessary for the developer. While in clock-
oriented models the appropriate process receives control constantly by getting the 
specified edge of the clock signal even if there is no need, thus the process will be in an 
active waiting state and it naturally leads to additional resources costs, for example an 
increment of CPU load, a capacity of memory in use and model execution time. And a 
volume of additional costs depends on the model and active waiting state time.  

Combined event-oriented and clock-oriented models usually use at complex systems, 
for example the model itself could be an event-oriented but testing data are generated 
throughout the whole modelling time with the constant time domain by a clock signal. 

RMAP transport level protocol model is developed as an event-oriented model. 

B. SpaceWire communication protocol  
SpaceWire is a spacecraft communication network based on an IEEE 1355 

communication standard [1].  
The purpose of SpaceWire is [9, 10]: 

to facilitate the construction of high performance on board data handling systems; 
to reduce system integration costs; 
to promote compatibility between data handling equipment and subsystems;  
to encourage reuse of data handling equipment across several different missions.  

This Standard specifies the physical interconnection media and data communication 
protocols to enable the reliable sending of data at high-speed (between 2 Mb/s and 400 
Mb/s) from one unit to another. SpaceWire links are full-duplex, point-to-point, serial 
data communication links. 

This Standard covers the following protocol levels of OSI model: physical level, data 
link level and network level. 

SpaceWire provides a means of sending packets of information from a source node to 
a specified destination node. SpaceWire does not specify the contents of the packets of 

0

period

t

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 103 ----------------------------------------------------------------------



information. SpaceWire provides a unified high speed data handling infrastructure for 
mutual connection of sensors, processing elements, mass memory units, downlink 
telemetry subsystems and electrical ground support equipment. 

C. Transport layer protocol RMAP  
The remote memory access protocol (RMAP) has been designed to support a wide 

range of SpaceWire applications. Its primary purpose however is to configure a 
SpaceWire network, to control SpaceWire units and to gather data and status information 
from those units. RMAP may operate alongside other communications protocols running 
over SpaceWire [4].  

RMAP may be used to configure SpaceWire routing switches, setting their operating 
parameters and routing table information. It may also be used to monitor the status of 
those routing switches. RMAP may be used to configure and read the status of nodes on 
the SpaceWire network. For example, the operating data rate of a node may be set to 100 
Mbits/s and the interface may be set to auto-start mode [4].  

For simple SpaceWire units without an embedded processor, RMAP may be used to 
set application configuration registers, to read status information and to read or write data 
into memory in the unit. For intelligent SpaceWire units RMAP can provide the basis for 
a wide range of communications services. Configuration, status gathering, and data 
transfer to and from memory or mailboxes can be supported.  

RMAP is used to write to and read from memory, registers, FIFO memory, mailboxes, 
etc, in a destination node on a SpaceWire network. Input/output registers, control/status 
registers and FIFOs are assumed to be memory mapped, so are accessed as memory. 
Mailboxes are indirect memory areas that are referenced using a memory address. All 
read and write operations defined in the RMAP protocol are posted operations i.e. the 
source does not wait for an acknowledgement or reply to be received. This means that 
many reads and writes can be outstanding at any time. It also means that there is no 
timeout mechanism implemented in RMAP for missing acknowledgements or replies. If 
an acknowledgement or reply timeout mechanism is required it must be implemented in 
the source user application. 

Write commands can be acknowledged or not acknowledged by the destination node 
when they have been received correctly. If the write is to be acknowledged and there is 
an error with the write request, the destination will send an error code to the source that 
sent the command. The error can only be sent to the source if the write command header 
was received intact, so that the destination that detected the error knows where to send 
the error message. If no acknowledgement is requested then the fact that an error 
occurred may be stored in a status register in the destination node. Write commands can 
perform the write operation after verifying that the data has been transferred to the 
destination without error, or it can write the data without verification. To perform 
verification on the data requires buffering in the destination node to store the data while it 
is being verified, before it is written. The amount of buffering is likely to be limited so 
verified writes ought only to be performed for relatively short sets of data, that will fit in 
the available buffer at the destination. Longer writes can be performed but without 
verification prior to writing. Verification in this case is done after the data has been 
written. Verified writes should always be used when writing to configuration or control 

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 104 ----------------------------------------------------------------------



registers. The acknowledged/non-acknowledged and verified/non-verified options to the 
write command result in four different write operations: 

Write non-acknowledged, non-verified;  
Write non-acknowledged, verified;  
Write acknowledged, non-verified;  
Write acknowledged, verified.  

The read command reads one or more bytes of data from a specified area of memory 
in a destination node. The data read is returned in a reply packet. 

The read-modify-write command reads a register (or memory) returning its value and 
then writes a new value, specified in the command, to the register. A mask can be 
included, in the command, so that only certain bits of the register are written. This 
provides an atomic operation that can be used for semaphores and other handshaking 
operations. 

D. RMAP protocol SystemC model  
Model of Remote Memory Access Protocol (RMAP) designed and implemented with 

SystemC. RMAP model is an event-oriented as was noticed thereinbefore. The whole 
model structure with main blocks and data flows is shown at fig. 3. All interblock 
relations are based on port-interface interaction (one of SystemC basic modelling 
conceptions), a port depicts as square with two arrows inside and an interface depicts as 
circle with one arrow inside. 

The protocol model implemented with accurate respect to specification and it was 
one of the main criteria during the implementation.   

The architectural diagram at fig. 3 contents RMAP protocol model and application 
carries out all required interaction with model and actually testing of this model. 

Protocol model divides onto four main blocks: 
Up_data_wrapper – the block provides functions for an application 
interaction with the protocol model; 
Command_handler – the block performs assembling of a command and reply 
headers, leads handshaking with an application and further data transmission. 
This block performs the main management role and protocol commands 
processing in case of any specified error detecting a decision about further 
actions is considered exactly by the Command_handler block. For example, 
CRC data error was detected at the incoming packet by the Error_check 
block, this error initiates a notification about the error to the 
Command_handler block and a request for the command execution won’t be 
able to transfer to an application. The error will be statistically counted; if 
necessary an answer will be assembled and transferred with the occurred 
error code notification. Request rejection situations are similarly processed;  
Error_check – the block is responsible for calculating, setting and checking 
of the CRC header and data fields. The CRC header field is always checked 
in contrast to the CRC data field which is checked depending on a received 
command. The data field could have a big size.  The CRC check demands 
buffering of the whole data which demands a big receiving buffer size. 
Therefore the Error_check block is also reliable for verification buffer 
overflow checking; 

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 105 ----------------------------------------------------------------------



Low_data_wrapper – the block provides interaction functions for a lower 
level model with the RMAP protocol model. It also performs information 
conversion to a symbols sequence for the consistent further transmission. 

Low_data_wrapper

Up_data_wrapper
RMAP

Error_
check

rxtx

tx rx

Command_handler

APPLICATION

 
Fig. 3. RMAP model architectural diagram 

Each of the Command_handler and Error_check blocks is consist of two sub blocks. 
First one is a receiver and second one is a transmitter. These sub blocks divide 
functionality of each block. 

It should be noted that a term symbol is a nine bit word in current model, where eight 
lower bits are data and the ninth bit performs an end of packet definition. The ninth bit is 
always equal to null except of an end of packet symbol and an error end of packet.       

The Application module provides necessary requirements for system performance: 
various test data generation, received data processing, dialoging with the RMAP model. 
Certainly the Application module obvious purposes are: performance and possibilities of 
the designing model check; initiating, tracking and processing of critical and error 
situations. 

The RMAP model implementation works the following way. The request for a 
command transmission comes from an application to the RMAP. The request provides 
necessary parameters for RMAP command assembling. Because of the accurate 
parameters list is absented in the protocol specification a developer could prepare it on 

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 106 ----------------------------------------------------------------------



his own. In the present case the list of parameters is consist of symbols: the destination 
logical address; the packet type which includes command settings; destination node key; 
transaction identifier;  write/read address; write/read data volume. 

RMAP assembles a command header. The header is transmitted further to algorithm. 
The command header is transmitted as an array in single iteration within the RMAP 
model. After the CRC field is settled the command header is transmitted to the protocol 
model output. Then it is transmitted symbol-by-symbol to the channel.   

Thereupon the RMAP model receives data for transmission from the application 
depending on an initialized command. A data transmission by small data cells is 
implemented. A data cell size may be various and it is settled by software. When data 
segment is buffered and CRC is set, data is transmitted symbol-by-symbol to the channel 
also.   

 The required addition is that the specification didn’t specify exact location for the 
end of packet symbol (EOP) addition. Therefore the end of packet symbol is created and 
transmitted with the data. 

 The RMAP command reaches a destination node after the channel. The command 
header is assembled by the node, the CRC field is checked. A few header fields are being 
transmitted to application as authentication request. If necessary the header is copied for 
the future response generation.  

Data are received symbol by symbol also. Then they are assembled to data cells. 
They will buffer for the CRC field check, if verification is required. Thereupon data are 
transmitted further cell by cell to the buffer until the authentication completes.  

In the successful authentication case data is transmitted to the destination node 
application and the transmission would be ended with the end-of-transmission signal. 
After destination node’s application received this signal, the reply is transmitted to the 
source node application depending on type of received command. The reply packet is 
transferred through the RMAP model, then enters the channel and comes to the source 
node application. 

Therefore general algorithm of RMAP model work looks like. As mentioned 
thereinbefore the model is event-oriented and all interactions inside of it are based on 
events, each of them could initiate the next sequence of operations. The thread diagram 
of this model is shown at fig. 4.  

Two RMAP protocol models with applications are depicted at fig.4 for the most 
convenient representation of thread sequence invokes. An application on the left is the 
initiator of a command transmission and an application on the right is receiver of 
commands, if necessary it assembles and transmits the reply on the command. The 
application initiator of a command transmission also receives respond from the command 
execution. 

The description of illustrated threads follows (fig. 4): 
1. The thread is responsible for command transmission to the channel (SpaceWire 

Network); 
2. This thread is responsible for receiving, processing and analyzing of the 

command header and data from the channel (SpaceWire Network). After a header 
was received, it is assembled, the CRC is checked and the header is transmitted to 
the Command_handler block where it’s buffered until data won’t be received. 
Thereupon they are received.  

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 107 ----------------------------------------------------------------------



If data have to be verified, they will be buffered symbol-by-symbol and 
the CRC will be checked. If there are no errors, thread 5 will be initialized, 
thereupon thread 3 and thread 5 launches. If there are occurred errors, thread 7 
will launch.  

If data were received without verification, thread 5 will be initialized and 
launched during the first data symbol is receiving. Thereupon data cells are 
completed by symbols and thread 4 is initialized.  

3. The thread is responsible for data transmission from the Error_check block to the 
Command_handler block, when verification is necessary. Data are transmitted 
with the verification from the receiving buffer. They are buffered in the 
Command_handler block until the reply for an authentication request won’t be 
received. 

4. The thread is responsible for data transmission from the Error_check block to the 
Command_handler block when no verification is required. Data are transmitted 
cell-by-cell, when they reach the Command_handler block, they are buffered 
until an authentication completes. 

5. There is a thread of header indispensible fields transmission to an application with 
the purpose of receiving an authentication reply. If necessary a reply header is 
assembled and an authentication reply is received (initialization of thread 6). 

6. There is a thread of the data transmission to an application. If an authentication 
reply is successful, data will be transferred cell-by-cell into the application; thread 
8 is initialized after transmission. If the authentication reply is negative, data will 
be discarded.  

7. The thread is responsible for a reply packet assembling (if it’s required). The 
reply packet is used for occurred errors notification. This thread initializes thread 
9. 

8. Into this thread reply data are generated and transferred to RMAP, it initializes 
thread 9 also.  

9. This thread is used for reply header and data transferring into a channel 
(SpaceWire network). 

Foregoing threads 2, 3, 4, 5, 6 descriptions are effective for RMAP commands 
processing. During replies process, simpler scheme of interaction works. It’s depicted at 
fig.4 also. 

E. Testing of the model  
Two duplicate instances connection by means of channel was chosen for the model 

testing. This is depicted at fig. 5. This approach includes launch, connection and joint 
operation of two models. Such approach is used for a model functionality checking and 
probable ways of improvement searching. 

There are some characteristic features of this approach. The first is an absence of 
difficult testing signals created by a developer. Because testing signals with the different 
structure are generated by an application like requests for commands transmission. 
Results of command execution are reflected at the application of the destination node. 
There is a possibility to trace the whole data exchange process in both directions, if error 
is detected at the destination node [10, 11]. 

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 108 ----------------------------------------------------------------------



Legend:

- a thread

- thread boundaries 21 - thread 1 invoke event of 
thread 2

1 - invoke line with the 
number of the calling thread

Low_data_wrapper

Up_data_wrapper

Error_
check

rxtx

tx rx

Command_handler

2

3 4
2

9

6

8

RMAP

APPLICATION

5 67

2

2

5

8

27

Low_data_wrapper

Up_data_wrapper

Error_
check

rxtx

tx rx

Command_handler

2

3 4
2

RMAP

APPLICATION

5 6

2
3 4

1

2

 
Fig. 4. The data thread diagram of the RMAP model 

Fig. 5. The scheme of point-to-point model testing 

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 109 ----------------------------------------------------------------------



Generated test signals at the destination node stimulate assembling, processing and 
symbol-by-symbol transmission into a channel. The destination node receives symbols 
from channel, assembles, process and executes command.   

All required changes are made during the testing and debugging of the model [12]. As 
a result the model satisfies with all requirements of specification and all inconsistencies 
are improved [13]. 

F. Interaction and testing with the SpaceWire model  
Therefore one of the primary purposes of RMAP development was joint operation 

over SpaceWire. There are a SpaceWire network configuration, SpaceWire units control, 
data and status information gathering from those units and a wide range of SpaceWire 
applications support. One of purposes was the interaction testing of RMAP protocol and 
SpaceWire protocol stack by means of their models. 

The scheme of models connection is depicted at fig. 6. There are two RMAP models 
with applications and a SpaceWire model below each of them. SpaceWire models are 
connected by the channel. The SpaceWire model was earlier designed and implemented 
by SystemC also. 

The result of models interconnection is protocols interaction proof. Synchronization 
was implemented by SpaceWire mechanisms. It could arise some collisions. The network 
level of SpaceWire model is responsible for command header “Destination Logical 
Address” field checking which is filled at a transport level outside of SpaceWire. Error 
situations were tested by theirs artificial generation. 

 

Fig. 6. The RMAP and SpaceWire models interaction diagram 

H. The RMAP protocol and such kind of systems modelling and testing features. 
The protocol modelling and model testing was based on an iterative approach. The 

model functionality was increased step-by-step during designing [14]. Firstly the process 
of one single command generation, transferring and receiving was debugged and tested.  

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 110 ----------------------------------------------------------------------



The other commands were implemented after. Thereupon the process of a reply packet 
generation, transferring and receiving was debugged and tested. Then transferring and 
processing of several different commands were done. Various commands combinations 
were tested. The last but not least was the stage of implementation of an error situation 
handling. This stage was the most difficult. It caused a lot of algorithm changes. The 
algorithm complexity was highly increased. 

Some over difficulties were occurred during the RMAP protocol model elaboration. 
The symbol-by-symbol transmission into a channel (SpaceWire network) complicated 
data receiving. A header assembling demands concrete fields analyses. Small segment 
data transmission complicated model also.  Therefore a command receiving or 
transmitting algorithm consists of huge number of iterations. Different iterations 
depending on type packet includes different algorithm branches. This point makes 
debugging process much more difficult. 

The feature of SpaceWire protocol stack is that all header fields are filled by transport 
layer. Incidentally the RMAP protocol is responsible for header fields filling. It means 
that RMAP protocol includes necessary information about contents of header fields. 
Various error situations processing is defined by RMAP protocol either. Therefore a set 
of model tests becomes more and more complicated. 

The important aspect is that RMAP directly interacts with an application. This aspect 
highly expends a set of functions provided with the RMAP interface for interaction with 
an upper level (application). In comparison with any middle layers which only provide 
ability to transfer and receive data. But mainly it depends on the protocol complexity. 

Ambiguous descriptions of some protocol specification points provide deadlock 
situations. A deadlock situation solution and amendments could be accepted by 
workgroup. A developer should choose the most appropriate way of implementation, if 
there is an absence of any situations descriptions. It requires some additional time costs. 

III. CONCLUSION 

As an important result of the RMAP protocol and SpaceWire protocol stack co-
modelling the RMAP protocol model which satisfies the specification requirements was 
designed. This model could be used as the separate module, as well as a part of a stack 
which might consist of some different protocols models. Then the interaction and 
compliance of protocols can be tested. It supports the pros and cons list compilation. This 
list could help to make correct decision about benefits of combination. 

The designed model can be used for the RMAP protocol hardware testing for 
specification compliance. Hardware could be incorrectly implemented also. 

During the model designing weak spots, inconsistencies were found in the protocol 
specification. The revision list with corrections, additions and recommendations to the 
specification was compiled.  This makes easier and more effective the process of 
protocol development on specification stage. It provides important information for 
significant decisions which should be accepted. 

According to the received modelling experience the affirmation about iteration 
approach benefits is possible. The whole functionality could be hardly predicted, but it’s 
easier to fill blocks with the functionality during elaboration. 

There is an imperfection. Some unforeseen subtleties in the beginning of the design 
could provide essential algorithm correction. When block functionality is huge enough, 

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 111 ----------------------------------------------------------------------



the alteration of the algorithm demands big efforts and time wastes. During the RMAP 
model designing this kind of situation was occurred upon specified errors processing. It 
confirms the importance of the model structure development before an implementation 
stage. 

REFERENCES 

[1]  V. Olenev, Y. Sheynin, E. Suvorova, S. Balandin, M. Gillet, “SystemC Modelling of the Embedded Networks”, 
Proceedings of 6th Seminar of Finnish-Russian University Cooperation in Telecommunications (FRUCT) 
Program (pp. 85-95). Saint-Petersburg University of Aerospace Instrumentation (SUAI), Saint-Petersburg, 2009 

[2] V. Olenev, I. Korobkov, N. Martynov, A. Shadursky “RMAP and STP protocols modelling over the SpaceWire 
SystemC model”, Proceedings of 8th Seminar of Finnish-Russian University Cooperation in 
Telecommunications (FRUCT) Program (pp. 111 – 121), Lappeenranta University of Technology (LUT), 
Lappeenranta, 2010 

[3]  Y. Sheynin, T. Solokhina, Y. Petrichkovitch “SpaceWire technology for the parallel systems and onboard 
distributed systems”, ELVEES, 2006, 

[4]  ESA, specification RMAP, “SpaceWire Remote Memory Access Protocol”, University of Dundee, Applied 
Computing, Dundee, DD1 4HN, Scotland, UK, 2006. 

[5]  I. Shugarin, V. Kanishev “Application of the SystemC language and its development tools for SoC 
development”// Chip news. 2006.  9. . 51-56. 

[6]  “SystemC User's Guide. Open SystemC Initiative (OSCI). Version2.0”, 1996-2002. 
[7]  D. C. Black, J. Donovan, B. Bunton, A. Keist, “SystemC From the Ground Up”, 2004 
[8] N. Martynov “The comparative analysis of the event-oriented and clock-oriented SystemC models, Proceedings 

of 62rd Saint-Petersburg University of Aerospace Instrumentation student scientific and technical conference, 
Saint-Petersburg University of Aerospace Instrumentation (SUAI), Saint-Petersburg, 2009. 

[9]  ESA (European Space Agency), standard ECSS-E-50-12A, “Space engineering. SpaceWire – Links, nodes, 
routers and networks. European cooperation for space standardization”, ESA Publications Division ESTEC, 
Noordwijk, The Netherlands, 2003. 

[10] V. Olenev, I. Korobkov, N. Martynov, A. Shadursky “Modelling of the SpaceWire communication Protocol”, 
Proceedings of 7th Seminar of Finnish-Russian University Cooperation in Telecommunications (FRUCT) 
Program (p. 96), Saint-Petersburg University of Aerospace Instrumentation (SUAI), Saint-Petersburg, 2010 

[11] V. Olenev, I. Korobkov, N. Martynov, A. Shadursky “Modelling of the RMAP and STP transport layer protocols 
as a part of the SpaceWire protocol stack model”, Proceedings of 63rd Saint-Petersburg University of Aerospace 
Instrumentation student scientific and technical conference, Saint-Petersburg University of Aerospace 
Instrumentation (SUAI), Saint-Petersburg, 2010. 

[12]  A. Jantsch, “B. SpaceWire communication protocol Embedded Systems and SoCs”, Morgan Kaufmann 
Publishers, Stockholm, 2004 

[13]  V. Olenev, “Different approaches for the stacks of protocols SystemC modelling analysis”,  Proceedings of the 
Saint-Petersburg University of Aerospace Instrumentation scientific conference (pp. 112-113), Saint-Petersburg 
University of Aerospace Instrumentation (SUAI), Saint-Petersburg, 2009. 

 [14] Eric J. Braude, “Software Engineering. An Object-Oriented Perspective", 2004 

_____________________________________________ 9TH CONFERENCE OF OPEN INNOVATIONS COMMUNITY FRUCT

---------------------------------------------------------------------- 112 ----------------------------------------------------------------------


