1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

HiveMind Collaborative Mind Map Editor:
Architecture and Implementation of Network
Subsystem

Andrey Vasilev, Oleg Kandaurov, Alexander Kulikov, Ilya Paramonov
Yaroslavl State University
Yaroslavl, Russia
{vamonster, kandaurovoleg, ivparamonov } @ gmail.com

Abstract

HiveMind is a cross-platform mind map editor. Its most important feature is collaborative mind
mapping, allowing different people to edit mind maps together regardless of their location.

In this paper we discuss the architecture of HiveMind network subsystem and implementation
of collaborative mind map editing based on the XMPP pubsub extension protocol. Our approach
operates in terms of abstract commands, which makes it loosely coupled from the application domain.
It also makes possible to spread our teamwork architecture to a broader class of applications, which
could benefit from collaborative document editing.

Index Terms: Mind map, collaboration, pubsub, XMPP.

I. INTRODUCTION

Mind map is a diagram used to represent words, tasks, ideas, or other items linked to and
arranged around a central key word or idea. There is no predefined algorithm on how to add
and structure these data, which makes mind maps suitable for such activities as study, project
management, problem solving, brainstorming.

These kinds of work often involve many people. It reveals several issues. Firstly, all these
people should be gathered in one place to begin collaboration. Secondly, it is hard to provide
equal access to all participants, because only one person at the time can make changes to the
mind map being constructed, for instance, on a whiteboard.

HiveMind is a cross-platform collaborative mind map editor, which main idea is to give
everyone an equal opportunity to contribute to the shared mind map regardless of their location
either by using a mobile device or a personal computer.

In general, the collaboration process can be described in the following way. One of parti-
cipants publishes his/her mind map as a network service and goes on editing it. Another user
connects to the service and retrieves the latest copy of the published mind map. After that,
both users edit the map together. By changing a policy on the server side, it is possible to
support for various teamwork scenarios.

To allow starting teamwork at any moment we needed to choose a message exchange
system. We selected Extensible Messaging and Presence Protocol (XMPP), because it helped
us to manage with several network-related issues [1].

In this paper we discuss the architecture of HiveMind network subsystem and implementation
of collaborative mind map editing based on the XMPP pubsub extension protocol.

217

1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

II. NETWORK SUBSYSTEM ARCHITECTURE

The XMPP protocol family is build out of two things: the core technology and the XMPP
Extension protocols (XEP). The core is responsible for the message exchange between different
parts of the system. Various extension protocols are built on top of the core. The process of
creation and maintenance of such protocols is managed by XMPP Standards Foundation [2].

The XMPP publish-subscribe extension [3] uses the classic “publish-subscribe” or “observer”
design pattern: a person or application publishes information, and an event notification (with
or without payload) is broadcasted to all authorized subscribers. In general, the relationship
between the publisher and the subscriber is mediated by a service that receives publication
requests and broadcasts event notifications to subscribers.

Service may support several distinct entities available for subscription. These entities are
called “nodes”. There are different notification lists for each node hosted on the service.
Publishers send data to the node and subscribers receive event notifications from it. Nodes
can also maintain history of events and provide other services that supplement the pure pubsub
model. Data send to and from the node is called “item”.

In terms of publish-subscribe extension the collaboration process can be described as
follows. A user creates a service and a single node for message exchange. The other participants
subscribe to the created node. When anyone makes a change to the mind map it is sent to
the service, which notifies all participants about the change. The data is sent in the form of
the item payload. Having this principle scheme in mind, we began to form the teamwork
protocol and implement it in detail.

Each change to the mind map is atomic. All changes to the mind map are done with the use
of dialogs. When the edit operation is completed, QUndoCommand is created and pushed into
the command stack. For every change command type XML serialization and deserialization
functions are made. The use of edit commands causes the problem of sharing initial contents
of the mind map. In order to execute identical commands, all participants must have exact
copies of the initial mind map. In order to achieve this goal, the first item on the node must
contain XML-serialized mind map. All the other items, as discussed earlier, hold serialized
change commands. When a participant subscribes to the node he/she receives all the data
stored in the node.

Each modification published in the node is recorded as a “changeset”. The changeset holds
information about type of change, time it was formed, and the author of the change (see
fig. 1). Service may reject the changeset if it is irrelevant (e.g. user tries to update mind map
node when it was already deleted by another user) and send error notification back to the
subscriber.

Protocol design proposes asynchronous propagation of modifications on the client side of
publish/subscribe interaction. Modifications to the mind map are transmitted to the service in
the form of XML-serialized commands and are not stored in the local undo stack. The only
changesets received via update notifications are added to the stack. So, the subscriber must
wait for the correct notification from the service in order to see changes that he or she has
made to the mind map.

The subscribers can retrieve all items stored in the node anytime. This capability is used to
synchronize contents of their local copy of the mind map if transmitted changeset is rejected.
Service does not need any additional effort to have up-to-date map because all notifications
are local and cannot be lost during transmission.

To implement this asynchronous process, we introduced a new element to HiveMind core
— NetworkController. It manages publish-subscribe protocol handlers. All QUndoCommands,

218

1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

I'F
e

——
!"ﬂ_; wail for evenl J
e

— e
user changed mindmap _}J
e,
ereate OUndoCommand ____j
=) =
¥
o ’ e
| |:__ chansesel received :]
metwork aciiveT —— e
___,_,—'—_ _‘—\—_____‘
i T
L____E.DLI:I[G changesat _____-"I

licm \\5'3“:1-

Tl e 5cn-d -:huﬂ'lgcsr:t io server _—j

[:____ “send charu__um t0 subscribers

Fig. 1. Changeset propagation

created as a result of mind map modifications, are passed to the controller. If there is no
network collaboration at the moment, the command will be added to the local undo/redo
stack. Otherwise, command will be serialized and sent to the service. Update notifications
are deserialized into QUndoCommands and added to the undo/redo stack.

III. IMPLEMENTATION OF NETWORK SUBSYSTEM

Network subsystem of HiveMind is implemented on top of Twisted [4] and Wokkel [5].
Twisted is a framework for writing asynchronous, event-driven network applications in Python.
It has additional support for many GUI frameworks like Qt, GTK, Tk, and others.

219

1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

! I'E“l PubSubServical romBackend

=

@ Node :
(l;::l HackendService

ey gl
Ciauhscrpd i duil
v allbadions: dwl

| f!::l MetworkConlrolbe

@L‘nll-xliunﬂud-:

o ems lis

@ Hivemind®ode {_E-} Fing Manager

e

i
I
1
matifies

:T <

@ PimgClweniPrstocal

: @ ChengesetSinck

O cntity; I3

Fig. 2. Hierachy of network classes Fig. 3. PingManager interaction

Wokkel library is a pack of enhancements for Twisted. Particularly, Wokkel provides a
mechanism for easier implementation of XMPP Enhancement Protocols (XEP). It supports for
Service Discovery (XEP-0030), Publish-Subscribe (XEP-0060) and other XEPs. Implementation
of XEP-0060 does not contain business logic. It means that Wokkel responds for receiving and
generating XMPP requests according to XEP-0060 specification. Wokkel reacts on external
pub/sub events and invokes corresponding methods.

XEP-0060 is very large and complicated. Implementation of all features, necessary for
HiveMind, would take lots of time. Idavoll library is built on top of Wokkel and provides
implementations of many XEP-0060 features such as “Subscribing”, “Publishing”, “Persistent
items”, “Node creation” and etc.

Idavoll has many classes needed to implement XEP-0060 specification (see fig. 2). Node
class represents a XEP-0060 node. There are two node types: Leaf and Collection. A leaf
node contains a published item, whereas a collection node contains other nodes.

HivemindNode class inherits LeafNode, but stores the published items in ChangesetStack
instead of a simple list. Using of ChangesetStack allows to check integrity and correctness
of data. Storage class responds for managing all nodes on the service. BackendService is an

220

1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

implementation of XEP-0060 business logic. PubSubServiceFromBackend inherits Wokkel’s
PubSubService class. It invokes methods for handling corresponding XMPP requests and
delegates action performing to BackendService class.

Mobile devices often have unstable internet connection, so the user have to be notified when
XMPP session is lost. We check connection using XEP-0199 (XMPP Ping) [6]. PingClient-
Protocol class sends ping to the XMPP server and waits for reply. If there is a certain number
of failed pings, the connection is considered as lost.

The similar mechanism is used for checking participation status of a person. On the service
each participant has his/her own instance of PingClientProtocol. Ping handler on the client
side replies only to the service which it is connected to. We implemented PingManager class
to manage multiple instances of PingClientProtocol (see fig. 3). It creates/deletes instances
and starts/stops ping to the certain entity. PingClientProtocol class is responsible for notifying
NetworkController about participant status, which is shown to the service owner (see fig. 4).

IV. ACCESS CONTROL SYSTEM

By default, all participants of teamwork have equal permissions to contribute to the mind
map. It is quite convenient for brainstorming-like activities when the purpose of the collaboration
is to generate some materials or to find a solution for a long-standing problem. This kind
of behavior looks unsuitable for other use cases. Sometimes it is useful to restrict access
for particular users in order to prevent accidental interference of teamwork. To take such
scenarios into account we introduced access control system to HiveMind.

XEP-0060 provides a feature, named Access Model, which can be associated with authenti-
cation system. The user, who creates the mind map, can set trust level for all new participants
1.e. control who can participate in collaboration. There are four access models implemented
in HiveMind:

e “Open” — any person may join collaboration;

o “Roster” — only contacts from the owners roster may join;

o “Authorize” — the owner choose who may join on the fly. When a new person is
connected, the owner gets a participation request from the person;

o “Whitelist” — a person may join only if he/she is in the owners whitelist.

“Affiliations” is the next feature, defined in XEP-0060, being a part of HiveMind access
control system. This feature provides authorization capabilities to XEP-0060. After the person
joined collaboration, he/she has a role, which determines a set of allowed actions. There are
four roles implemented in HiveMind:

Permissions | X

[JID J| Permission Il State J | &

|seconduser@jabber.... Owner Disconnected ‘
participant-two@[ab... Read only Disconnected
vamonster-pubsub... Full Connected

| vamonster@jabber.ru None Connected -

JID Permission

‘ | ‘ Full = ‘ | Add participant ‘

_ Cancel || 0K \

Fig. 4. Permissions dialog

221

1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

o “Outcast” — person not allowed to join collaboration i.e. in terms of IM he/she is banned;

o “Member” — person allowed to receive items;
o “Publisher” — person allowed to publish and receive items;
e “Owner” — similar to the Publisher, but allowed to configure collaboration behaviour.

Service owner can edit role of desired person at any time with the use of permissions dialog
(fig. 4).

XEP-0060 has features that makes access control even more flexible. In some cases it might
be useful to temporarily assign publisher role to all participants. HiveMind has implementation
of XEP-0060 feature named Publish Model. It determines two cases of who is allowed to
make changes to the mindmap. In the first case it is a person whose affiliation is publisher,
and in the second case any participant is allowed to post changes.

V. CONCLUSION

In this paper we proposed network subsystem architecture for collaborative mind mapping
based on the XMPP pubsub extension protocol. Our approach was successfully implemented in
HiveMind application, which allows teamwork mode on various platforms including Maemo,
MeeGo Netbook, and GNU/Linux.

HiveMind application can be downloaded from the project homepage at the following URL.:
http://linuxlab.corp?7.uniyar.ac.ru/projects/hivemind. The source codes are available from the
Mercurial repository at http://linuxlab.corp7.uniyar.ac.ru/hgpub/hivemind.

The implemented network subsystem operates in terms of abstract commands, which makes
it loosely coupled from the application domain. It also makes possible to spread our teamwork
architecture to a broader class of applications which could benefit from collaborative document
editing.

Another direction for future development of the project is integration with SmartConference
System. This kind of work is in progress now.

REFERENCES

[1] A. Vasilev, A. Golovchenko, A. Kulikov, I. Paramonov “HiveMind: Cross-platform Application for Collaborative Mind
Mapping,” Proceedings of the 8th Conference of Open Innovation Framework Program FRUCT, pp. 219-224, 2010.

[2] The XMPP Standards Foundation http://xmpp.org

[3] P. Millard, P. Saint-Andre, R. Meijer XEP-0060: Publish-Subscribe specification. http://xmpp.org/extensions/xep-
0060.html

[4] M. Zadka, G. Lefkowitz The Twisted Network Framework http://twistedmatrix.com/users/glyph/ipc10/paper.html

[5] R. Meijer Wokkel http://wokkel.ik.nu/

[6] P. Saint-Andre XEP-0199: XMPP Ping http://xmpp.org/extensions/xep-0199.html

222

