
SketchIt: Simple Vector Scheme Editor for
Mobile Devices with Touch Screen

Vitaly Petrov, Evgeny Linsky
SUAI

St. Petersburg, Russia

{vit.petrov, evlinsky}@vu.spb.ru

Abstract

SketchIt is a simple vector scheme editor for mobile devices with touch screen. The main feature

of editor is auto recognition of figures. This helps users to draw an accurate and neatly schemes

quickly. The paper describes details of figure recognition algorithm.

Index Terms: Image recognition, Qt, Maemo, MeeGo.

I. INTRODUCTION

Nowadays almost everybody, who have been involved in a team work, is familiar with the
following problem. During a conference or a meeting there appears a necessity to draw a
scheme or a graph. It might be a system architecture, device structure or a project schedule.
It should be possible to draw such scheme very fast using mobile device, but the result should
be accurate and neatly.

In existing scheme editors (MS Visio, OpenOffice Draw) users select the figure from some
predefined set and place it somewhere on the screen. But this is not very fast process. We
propose another solution. User just draws sketch of figure on the touch screen using finger
or stylus, application recognizes drawings and converts them to vector format (see fig. 1).

Fig. 1. SketchIt kernel: figures auto recognition

The functionality of the editor includes the following features:

• Auto recognition of figures (basic set: line, arrow, ellipse and rectangle);
• Moving, deleting and resizing of figures;
• Binding text to figures;
• Undo and redo;
• Export to PNG and SVG formats.

___ 1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

-- 199 --

The paper has the following structure. The section II describes recognition of user actions:
drawing, moving, resizing of figures. The section III reports the details of figure auto recognition.
Implementation is discussed in section IV. Section V concludes the paper and gives ideas for
future work.

II. USER ACTIONS RECOGNITION ALGORITHM

Before starting image recognition, it is necessary to recognize the user’s action. It could
be drawing of new figure or moving, resizing, labeling of existing figure. Instead of adding
extra buttons (“Set text”, “Move”, “Resize”, “Bind text”), the heuristic algorithm (fig. 2) is
proposed. It selects the user’s action base on coordinates of the first point and the type of
movement. The deleting of figure is performed by complex gesture “cross-hatching” of figure.
Such complex gesture is recognized by figure recognition algorithm and described in the next
section.

Fig. 2. Actions recognition algorithm

When user touch a point, that belongs to two or more figures, the following procedure is
used. The touch of border has higher priority than general touch of figure. If priority is equal
for several figures, the older one will be chosen.

III. IMAGE RECOGNITION ALGORITHMS

For the recognition algorithm, the curve, drawn by user, is a sequence of points with two
coordinates: x and y. To recognize the image, the 3-steps algorithm is used. Firstly, from the
sequence of point the contour of the figure should be detected (subsection III-A). Then, using
the sequence and contour the figure type is determined (subsection III-B). Finally, base of
detected figure type the appropriate recognizer of figure parameters is executed (subsection
III-C).

___ 1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

-- 200 --

A. Contour Detection

The contour detection algorithm is very simple. It is necessary to find two points: A(xmin, ymin)
and B(xmax, ymax).

B. Figure Type Recognition

The figures type recognition procedure has a tree structure and is shown on the fig. 3. In
our application to delete figure one should cross-hatch it (fig. 4). Hatching is polyline, so it
is recognized using the similar algorithm as lines.

Fig. 3. Figure type recognition algorithm

Firstly, it is necessary to chose the figure class: a line/arrow, or a convex object. A convex
object is usually drawn as follows. User starts a curve somewhere on the screen, move a
stylus/finger for a while and, finally, come back to the start point. It means that first and last
points are situated near each other. So as a criterion there can be used a fraction

E =
|xbegin − xend|+ |ybegin − yend|

w + h
,

where xbegin and ybegin are coordinates of the first point, xend and yend — of the last one,
w is a contour width, and h is a contour height. After calculation, E can be compared with
a defined coefficient (in the current version it is equal to 1

3
). If E is lower, the drawing is

considered to be an object, otherwise, a line.
Then, if it is a line, going from up to down, and there are more than 5 direction changes, it

is hatching. Hatching means that figure below the curve should be deleted. Otherwise, curve
is supposed to be a line or an arrow. To chose between these two types, it is proposed an
algorithm, calculating the number of turns for more than 90 degrees. When drawing has an
arrowhead, user makes such a turn at least 3 times. And this is a formal criterion for choice
between line or arrow.

___ 1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

-- 201 --

Fig. 4. Figures deletion sketch

The method for distinguishing the object type (ellipse or rectangle) is computation of the
distance from each point of the curve to the contour (fig. 5). The distance is calculated using
the following formula:

H =
1

N
·

N∑

i=0

(
L

(i)
x

w
+

L
(i)
y

h
).

The smaller this value is, the more the object looks like a rectangle. The current threshold
for H is 0.3.

Fig. 5. Ellipse / rectangle chose

C. Figure Parameters Recognition

After the figure type is recognized, its parameters should be calculated. This part is also
simple and works as follows (fig. 6).

• Line: A — the first point from the sequence; B — the last point from the sequence.

___ 1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

-- 202 --

Fig. 6. Figure parameters recognition

• Arrow: A — the first point from the sequence; B — the first turn for more than 90
degrees.

• Ellipse: x0 and y0 — coordinates of the upper left point of the contour; w and h —
contour width and height respectively.

• Rectangle: similar to ellipse.

IV. TECHNICAL DETAILS

The application was written on C++ language with usage of Qt [1] libraries. Currently
there are builds for Maemo [2] and Meego [3]. The port for Symbian [4] will be available
soon. Screenshot of Maemo version is presented on fig. 7.

SketchIt code consists of 5 main modules:

1. Model stores the set of figures and their parameters;
2. View is responsible for the image drawing and user input;
3. Drawer creates image from the set of figures;
4. Recognizer recognizes the figure type and calculates coordinates from the curve drawn

by user;
5. IO supports SVG and PNG formats.

SketchIt is already available from garage [5] and OBS [6] servers, and will be published
in Nokia Ovi Store [7] and Intel AppUp [8].

V. CONCLUSION

In this work we describe figure recognition algorithms for simple vector editor targeted for
mobile devices with touch screen. Algorithm could recognize several user actions (moving,
resizing, deleting) and simple figures (arrow, line, rectangle, ellipse).

___ 1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

-- 203 --

Fig. 7. Current version interface

There are two main directions of SketchIt development:

• integration with web document storage services (e. g. Google Docs);
• adding a possibility to connect and group figures in order to move and resize them

together (as it is done in Visio).

REFERENCES

[1] Nokia corporation, ”ross-platform application and UI framework Qt,” http://qt.nokia.com/products.
[2] Maemo Community, ”Official Maemo OS community web site,” http://maemo.org.
[3] MeeGo Community, ”Official MeeGo OS community web site,” http://meego.com.
[4] Nokia Corporation, ”Official Symbian OS web site,” http://symbian.nokia.com/.
[5] ”SketchIt for Maemo web page,” https://garage.maemo.org/projects/sketchit.
[6] ”SketchIt for MeeGo web page,” https://build.pub.meego.com/project/show?project=home:vitpetrov:sketchit.
[7] Nokia Corporation, ”Nokia Ovi Store,” http://www.ovi.com.
[8] Intel Corporation, ”Intel AppUp,” http://www.appup.com.

___ 1ST REGIONAL MEEGO SUMMIT RUSSIA-FINLAND

-- 204 --

