
Load balancing routing algorithm for data

gathering sensor network

Bakin E., Evseev G., Dorum D.

2012

Saint-Petersburg State University of Aerospace Instrumentation

2

Agenda

• Data gathering sensor networks description

• Cyclic data gathering mechanism

• Problem of bottlenecks in routes

• Classic Dijkstra algorithm

• Modified Dijkstra algorithm

• Analysis of algorithm effectiveness

• Conclusion

3

Data gathering sensor network
1. Consists of a set of identical elements (sensors) and base station (BS).

2. Sensor purpose: environment parameters measurement, transmission

of messages to base station, relaying of messages, going from other

sensors.

3. BS purpose: gathering, processing and storage of information, coming

from sensors, transmissions management.

SE uC TRx

Autonomous

PS

Sensor

BS

s1

s2

s3

s4

s5

s6

s7

s8

s9

s11

s10

s12 s13

s14

4

Cyclic data gathering

s1 s2

s3

s1

si+1s2

s4

s1 s2 s3

si

..
.

si

si+1

a) b) c)

Each sensor forms a

message

Messages collection on

BS

... ...
DC DC DC

Collisions…
Duty cycle duration  min

5

Bottlenecks in routes
BS

s1

s3

s2

s4 s5

s6 s7 s8

s9

s10

BS

s1

s3

s2

s4 s5

s6 s7 s8

s9

s10

3:1 1:1

Unbalance in routes lead to:

 collision number increasing

 duty cycle duration increasing

 frequent discharge of particular sensors batteries

6

Requirements to routing algorithm

 Balancing of traffic load between sensors

(minimization of number of bottlenecks in routes).

 Minimization of quantity of transmissions during duty

cycle (thus minimization of total energy consumption of

the network). This can be achieved with routing

through the shortest path.

 Low computation complexity.

7

Classical approach: Dijkstra algorithm

When using classic Dijkstra algorithm for routing:

•Algorithm calculates the shortest path from sensor to BS minimizing

sum of weights of links, used in a route.

•Weights wi,j do not vary during algorithm work and usually equal to

each other.

• Routes form a tree with a root in BS, thus loads are highly

unbalanced.

S = {s0, s1, … , sN} – set of sensors in the network

L = {…, li,j,…} – set of links in network. li,j  L if reliable channel

exists between sensors si and sj

wi,j – weight of link li,j

Notation: ri = Dijkstra(si)

8

Modified Dijkstra algorithm: main idea
1. Initially all the weights wi,j = 1.

2. Routes are calculated for all the sensors one-by-one.

3. After each iteration, weights of each link in calculated route are

increased on w, thus increasing “fee” for these links usage in

further routs.

BS

s1 s2

s4 s5

s7 s8

1

1

1

1

11

1

BS

s1 s2

s4 s5

s7 s8

1

1

1

1

11

1

S7 > S4 > S1 > BS

BS

s1 s2

s4 s5

s7 s8

1.1

1.1

1.1

1

11

1

1 1 1

BS

s1 s2

s4 s5

s7 s8

1.1

1.1

1.1

1

11

1

1

S8 > S5 > S2 > BS

BS

s1 s2

s4 s5

s7 s8

1.1 1.1

11 1.1

1

1.1

1.1 1.1

1

9

How to choose w correctly?

BS

s1 s2

s4 s6s5

s3

s7 s8 s9

1 1
1

11

1 1 1 1 11

S7 > S3 > BS

BS

s1 s2

s4 s6s5

s3

s7 s8 s9

1 2
1

11

1 1 2 1 11

S8 > S3 > BS

BS

s1 s2

s4 s6s5

s3

s7 s8 s9

1 3
1

11

1 1 2 2 11

S9 > S3 > S2 > BS
One extra transition!

Sample. If w = 1:

If w is chosen incorrectly total number of transitions

can grow sufficiently.

10

Lemma…

If w is chosen less or equal to 1/N2 (here N is number

of sensors in the network), than all the routes,

calculated with proposed algorithm would go through

the shortest path.

Proof…
After each iteration any link’s weight is increased on

value 1/N2. Thus after all N iterations any link’s weight

would increase no more than on N/N2 = 1/N. Since the

longest possible route contains N-1 links, total links

weight wouldn’t increase on more than (N-1)/N < 1.

And this value is less than initial weight of the link.

11

Algorithm pseudocode

12

Simulation (1/1)

1. Generate random graph of sensor network with

given size N.

2. Calculate the routes by means of CDA and

MDA.

3. For both cases calculate the collision free duty

cycle schedule with any scheduling algorithm.

4. Repeat the procedure 1-3 for 104 times.

13

Simulation (1/2)

14

Conclusion

1. Proposed algorithm allows traffic load balancing

of routes.

2. Traffic load balancing performed with proposed

algorithm decreases duty-cycle duration

approximately on up to 20%.

3. Proposed algorithm complexity is low and is

polynomial of N.

15

Thank you!

Any questions?

