A scalable distributed M3 platform on a low-power cluster

Anders Berg, Petteri Karvinen, Stefan Grönroos, Frank Wickström, Shohreh Hosseinzadeh, Natalia Díaz Rodríguez, Johan Lilius

Åbo Akademi University

November 2013
Requirement: Small Smart-M3-based box

In-home Smart-M3 box collects and processes
- Sensor data (heartbeat, blood pressure, presence sensors, etc.)
- Video streams (for example from wearable camera)

Needs to process a large number of input data streams and handle a large number of subscriptions efficiently
Introduction

The Prototype Box

- 4 ODROID-X ARM development boards
- Cluster connected by 100 Mbps ethernet
- ODROID-X Node:
 - Exynos 4 SoC
 - Quad-core ARM Cortex-A9 @ 1.6 GHz
 - 1 GB RAM
 - eMMC storage (64 GB)
- Power consumption (cluster):
 - Idle: 8 W
 - Full load: 24 W
- Prototype has a fan
The Publish/Subscribe paradigm one of the most useful features of the Smart-M3 platform

The current solutions have problems regarding scalability

We have looked into the use of the RETE-algorithm \(^1\) as a scalable solution

We have implemented RDF triple publish/subscribe functionality in RedSib using the CLIPS \(^2\) rule engine

\(^1\) http://en.wikipedia.org/wiki/Rete_algorithm

\(^2\) http://en.wikipedia.org/wiki/CLIPS
Performance improvements

CLIPS implementation performance

- Note: Very preliminary results
- Benchmarks performed on a desktop PC
 - Not yet tested on ARM platform, but relative performance vs RedSib 0.4 expected to be similar

![Graph showing execution time vs number of triples in Berkeley DB]
Performance improvements

CLIPS implementation performance

- Benchmarks performed on a desktop PC
4store and Smart-M3

- We needed a distributed RDF-store to test our Smart-M3 box
- 4store is the only open-source, distributed, native RDF-store written in C
- We have written a librdf storage module for 4store, similar to the existing Virtuoso module
Performance improvements

RDF-store Benchmarks

- Preliminary benchmarks using the BSBM\(^3\) benchmarking tool
- Virtuoso 7 vs 4store on a Laptop (queries only)
- Performance appears quite similar between the stores on average.

\(^3\)http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
Performance improvements

RDF-store cluster benchmarks

- 1.6M triples: Performance similar for 1, 2, 4 nodes.
- Benchmark results at over 1.6M triples are still inconclusive.
- Some impressions:
 - Performance on one node seems to be dramatically reduced at 7M triples
 - 4 nodes at this number of triples still perform well.
 - Unstable results for one node already at 3.4M triples, while 2-4 nodes perform well.
 - Likely a consequence of the much larger amount of combined RAM in the whole cluster.
- DB also designed with 64-bit architectures in mind, while the ARM is 32-bit.
Context-aware Role-based Access Control

Why?
- Existing security model has only coarse-grained access control
- We would like fine-grained control, down to the triple level

We are planning an access control scheme using access control ontologies and rules

- Access control would be based on users’ roles and context information
- Users may define their own rules for access to their data, which have higher priority than general rules defined by administrators.
We are developing a middleware between the Smart-M3 and users and sensors

Modular design!

The different parts of Smart Space will be accessible through a REST web framework

The middleware manages Subscriptions in a **IF This Then That** manner

- **IF stepmeter value over 7000(This) Then post message on Twitter(That)**

4 www.ifttt.com
Future Work

- Work still in progress on all parts of the platform.
- Further performance evaluation/benchmarking needs to be performed.
Thank you for listening!

Questions?
RDF-store cluster benchmarks

- 4-store cluster performance with 1.6M triples.
- No benefit from clustering at this number of triples.