Simulation-based Optimization of Signaling Procedures in IP Multimedia Subsystem

Jasmina Barakovic Husic
Alisa Hidic
Mesud Hadzialic
Sabina Barakovic
Introduction
Introduction

- **IP Multimedia Subsystem (IMS)**
 - Logical architecture for a Next Generation Network (NGN) control plane
 - Supports a development of next generation services
 - Faces a challenge of rapidly increasing amount of signaling

- **Call Session Control Function (CSCF)**
 - Manages much of the signaling that occurs in the IMS
 - Configured to process SIP messages using a FIFO scheduling

- **First In First Out (FIFO)**
 - Does not enable
 - SIP messages that increase the efficiency of IMS to be processed earlier
 - Service differentiation because all SIP messages are treated equally
 - Prevention of SIP messages to loopback through one or more CSCFs
Research Motive

● Motive
 ● Need for a differentiated handling of SIP messages in order to optimize SIP signaling procedures

● Previous work
 ● Proposal of SIP message classification and prioritization algorithm
 ● Class 1: SIP messages that terminate the communication session, such as BYE, CANCEL
 ● Class 2: Light weight SIP messages such as REGISTER, MESSAGE, PUBLISH, NOTIFY and SUBSCRIBE
 ● Class 3: SIP messages that establish the communication session, such as INVITE, and provisional responses, such as 1xx status codes
Research Aim

- **Aim**
 - Implement SIP message classification and prioritization algorithm in Network Simulator version 2 (ns-2)
 - Analyze an impact of proposed algorithm on SIP performance metrics
 - Registration Request Delay, Session Request Delay, Session Disconnect Delay
 - Perform the simulation-based optimization of SIP signaling procedures
 - Under high-load or overload conditions

1.5.2014. FRUCT 15
Related Work

1. Introduction
2. Related Work
3. Algorithm for SIP Message Classification and Prioritization
4. Simulation-based Optimization of Signaling Procedures
5. Results and Discussion
6. Conclusion and Future Work
Related Work

- SIP server overload control
 - Load balancing approach
 - Tries to avoid the overload by distributing the traffic load equally among the local SIP servers
 - Load reducing approach
 - Tries to prevent the overload collapse by reducing the traffic load in the whole SIP network
 - Priority-based
 - Push-back
 - Retransmission-based

- Focus is based on priority-based overload control
 - Mitigate overload by rejecting the SIP messages with low priority
 - Prioritization is performed by using different SIP message header fields
Algorithm Description

1. Introduction
2. Related Work
3. Algorithm for SIP Message Classification and Prioritization
4. Simulation-based Optimization of Signaling Procedures
5. Results and Discussion
6. Conclusion and Future Work
Informal Algorithm Description

- SIP message classification and prioritization algorithm
 - Two modes of operation:
 - Normal mode, wherein the SIP messages are processed using FIFO scheduling
 - Priority mode, wherein the SIP messages are processed by our three-priority level classification scheme
 - Normal mode of operation is switched to the priority mode when congestion is detected
 - Congestion is determined by exceeding the predefined queue length
 - Priority mode of operation implies the packet’s content check and classification according to SIP message type
Formal Algorithm Description

Pseudocode 1 SIP message classification and prioritization

Algorithm SIPMsgClassPrio
receive packet
IF congestion status is true THEN
CASE msgType inside packet OF
CASE reqMethod OF
SM_BYE : set high priority
SM_ACK : set medium priority
SM_CANCEL : set low priority
SM_INVITE : set high priority
OTHERS : set medium priority
ENDCASE
CASE rspCode OF
IF rspCode >= 100 AND rspCode < 200 THEN set low priority
ELSE IF rspCode >= 200 AND rspCode < 300 THEN set high priority
ELSE IF rspCode >= 300 AND rspCode < 700 THEN set medium priority
ELSE set low priority
ENDIF
ENDCASE
ENDCASE
ELSE enqueue packet
ENDIF
send packet to node
END SIPMsgClassPrio
Simulation Environment

- Simulation environment for SIP message classification and prioritization algorithm
 - Different simulators are compared
 - ns-2, ns-3, OPNET, OMNET++, QualNet
 - Comparison in terms of
 - Modelling capabilities
 - Credibility of simulation models and results
 - Extendibility
 - Usability
 - Cost of licenses
 - Simulator ns-2 is chosen (version 2.27)
 - Free and open-source simulator
 - Provides IMS functionality by adding an independently developed SIP module
 - SIP proxy server incorporate the functionality of CSCF
Simulation Setup

- Different number of SIP messages exchanged during SIP signaling procedures
 - Three types of SIP signaling procedures considered: registration, establishment and termination of session
- Simultaneous SIP signaling procedures are used to generate background traffic
 - Number of simultaneous SIP signaling procedures is in the range from 0 to 900
- Simulations are run for 500 simulations seconds
Results and Discussion

1. Introduction
2. Related Work
3. Algorithm for SIP Message Classification and Prioritization
4. Simulation-based Optimization of Signaling Procedures
5. Results and Discussion
6. Conclusion and Future Work
Simulation results

- SIP performance metrics
 - Registration Request Delay
 - Session Request Delay
 - Session Disconnect Delay

- Defined in RFC 6076
Discussion

● Priority mode of operation
 ● High priority value
 ● SIP messages to terminate the session
 ● Improve QoS, e.g., reduce duration of session termination procedure
 ● Improve QoE, e.g., improve billing user experience
 ● Low priority value
 ● SIP messages to establish the session
 ● Improve QoS, e.g., block a new communication sessions
 ● Improve QoE, e.g., users do not accept service degradation or interruption
Conclusion and Future Work

1. Introduction
2. Related Work
3. Algorithm for SIP Message Classification and Prioritization
4. Simulation-based Optimization of Signaling Procedures
5. Results and Discussion
6. Conclusion and Future Work
Conclusion

- SIP message classification and prioritization scheme is implemented in ns-2
- Simulation-based optimization of SIP signaling procedures is performed
 - Simulation results are analyzed in terms of RRD, SRD, SDD
 - Assigning high priority value to SIP messages that terminate existing sessions may reduce network congestion and improve QoS
 - Assigning low priority value to SIP messages that establish a new session may improve QoE
Future Work

- Development and deployment of algorithm for SIP message classification and prioritization in **experimental environment**
- Three-priority level classification of SIP messages
 - Enables the prioritization of different types of services
 - Useful in emergency situations
 - All SIP messages of one type of service (e.g., instant messaging) may be prioritized over all SIP messages of another type of service (i.e., voice calls)
 - This could not be simulated due to the limitations of used SIP module
 - This will be tested in experimental environment in future research activities
Thank you for attention.

JASMINA BARAKOVIĆ HUSIĆ
E-mail: jbarakovic@etf.unsa.ba
Tel: +387 33 250 725

University of Sarajevo, Faculty of Electrical Engineering
Zmaja od Bosne bb 71000 Sarajevo
Bosnia and Herzegovina