Smart-M3-Based Robot Interaction in Cyber-Physical Systems

Nikolay Teslya*†, Sergey Savosin*

*St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences, St. Petersburg, Russia

†ITMO University, St. Petersburg, Russia
Outline

- Introduction: Cyber-physical Systems
- Robots Interaction Scenario: searching objects with two robots
 - Robotic Kits for robot constructing
 - Robotic Kits: control block configuration, leJOS
- Robots Interaction Scenario: ontology, architecture, implementation
- Conclusion
Introduction: Cyber-physical Systems

- Based on the real time interaction between physical world and cyber world.

- Rely on communication, computation and control infrastructures commonly consisting of several levels for the two worlds with various resources as sensors, actuators, computational resources, services, etc.
Cyber-physical Systems: Example

- Home cleaning scenario.
- Devices:
 - Robot vacuum cleaner (e.g. Yujin Robot iClebo Arte or iRobot Roomba)
 - Manipulating robot (e.g. FESTO Robotino XT)
- “Smart home” systems (illumination control, information network, grid network, etc.)
Simplified Robots Interaction Scenario

- Two or more robots receive a task to execute actions, e.g. find an object and bring it to a storage.

- Only one robot should handle this task.

- Robots should interact to find the one who will bring the object to the storage.
Robots Interaction Scenario: Details

- Task 1. Each robot should scan an area around.
- Task 2. Each robot should find the objects.
- Task 3. Each robot should find another robot.
- Task 4. Each robot should interoperate with another robot and decide who will go to the object.
- Task 5. Selected robot should carry out defined task with the object.
Scenario Implementation: Robot Constructing

- Scenario requires only base robot functions like moving and orientation in physical space.
- Robotic kits allow concentrating on the scenario developing without spending resources to robot development.

Benefits:
- allow to construct robots with different morphology without difficult process of sensors, motors and chips developing.
- include controller board to control the inputs and outputs of the robot and provide environment for robot programming.

Requirements:
- Powerful and scalable control board.
- Set of sensors and motors.
- Information network connection.
Robotic Kits: Survey

<table>
<thead>
<tr>
<th>Control board</th>
<th>VEX Robotics Design System</th>
<th>Lynxmotion Servo Erector Set</th>
<th>Lego ® Mindstorms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VEX ARM® Cortex®-based Microcontroller (ARM® Cortex® M3 ARMv7, 72 MHz, 64 Kb RAM, 384 KB program space)</td>
<td>Arduino-based controller (BotBoarduino)</td>
<td>ARMv9 core CPU 300 MHz, 64 Mb RAM, 16 Mb flash memory and microSDHC port</td>
</tr>
<tr>
<td>Sensors</td>
<td></td>
<td>IR Range sensor (from 10 to 80 cm).</td>
<td>• ultrasonic sensor (from 3 to 150 cm),</td>
</tr>
<tr>
<td></td>
<td>• 2 limit switches,</td>
<td></td>
<td>• touch sensor,</td>
</tr>
<tr>
<td></td>
<td>• 2 bumper switches,</td>
<td></td>
<td>• gyroscopic sensor,</td>
</tr>
<tr>
<td></td>
<td>• ultrasonic range sensor (from 4 to 292 cm.),</td>
<td></td>
<td>• light sensor.</td>
</tr>
<tr>
<td></td>
<td>• 3 IR light sensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• infrared LED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motors</td>
<td>4 similar</td>
<td>16 different</td>
<td>• 2 large</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 medium</td>
</tr>
<tr>
<td>Information network</td>
<td>N/A</td>
<td>Bluetooth module</td>
<td>Bluetooth module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wi-Fi through USB</td>
</tr>
<tr>
<td>Additionally</td>
<td>• 300 structural parts</td>
<td>• 500 structural parts</td>
<td>550 parts + any part</td>
</tr>
<tr>
<td></td>
<td>• Wireless joystick</td>
<td>• Support of 3rd party sensors and motors</td>
<td>from the other Lego kits.</td>
</tr>
</tbody>
</table>
Lego Mindstorms EV3 Education Kit

- **Benefits:**
 - Provides the most used types of sensors and motors.
 - The control block has 4 input ports for sensors and 4 output ports for motors, USB port for different USB-devices, LCD screen, 6 buttons for user input and speaker for sound play.
 - The control block can be reconfigured for using high-level program languages for robot activity programming.
 - Wi-Fi USB-adapter allows connection to local Wi-Fi network.
 - Up to four EV3 control blocks can be connected using a USB cable and thereby enabling robot to have sixteen output ports and sixteen input ports.
Lego Mindstorms Robot Example

- **Control block**
- **Wi-Fi USB-adapter**
- **Gyroscopic sensor**
- **Large motor**
- **Ultrasonic sensor**
Reconfiguration of Lego Mindsorms EV3 Control Block

- Environment for compiling programs under existing control brick’s OS (e.g. NXTGCC, Lego.NET, different libraries for GCC, etc.)
- Controlling the EV3-based robot using different languages through the Bluetooth and/or USB interfaces (NXT_Python, OCaml-mindstorm, LabVIEW, etc).
- Replacement of the existing OS. The main control block OS is Linux-based and it is possible to run another Linux-based OS, that is built for ARM architecture. Using Linux-based OS allows writing programs with any supported programming language.
 - replacement of the kernel embedded into the control block (ROBOTC)
 - additional OS on SD-card without replacing the existing OS (brickOS, leJOS, ev3dev).
leJOS

- Acronym from Lego Java Operating System
- Provides the full featured Linux-based OS with GUI and Java Runtime Environment.
- LeJOS Java bindings implement access to the robot’s hardware.
- Some of LeJOS benefits are:
 - object oriented language (Java);
 - pre-emptive threads (determined context switching);
 - (multi-dimensional) arrays;
 - synchronization;
 - exceptions;
 - types of variable including float, long, and String;
 - most of the standard Java classes are available;
 - well-documented robotics APIs.
Robots Interaction Scenario: Ontology

- Robots are connected to the local area network with Wi-Fi USB-adapters.
- Interoperation is based on the smart space technology.
- Smart-M3 is used as a technological platform for smart space.
- Ontology describes main entities in the system.
- Additional devices can be connected to the smart space for the control and measurements.
Robots Interaction Scenario: Architecture

SSAP realization is provided by Java KPI library

Smart-M3-based Smart Space

Robot 1

Robot 2

Control device

SSAP

SSAP

SSAP

Large motors

Gyro sensor

Internal digital connection protocols

Ultrasonic sensor
Conclusion

- Existing robotic kits allow to concentrate on the scenario developing without spending resources to robot development.
- Devices in cyber-physical space are influenced by different events from the physical world and should cooperate in real time to reach desired goals.

Future work:
- Decrease object searching time as well as accuracy of objects detection.
- Raw sensor data processing has to be improved.
- More complex scenario can be implemented based on the case presented in the paper.
Thank you!

Contact information: e-mail: teslya@iias.spb.su; phone: +7 812 328 8071