H.264/AVC analysis of quality in wireless channel

Alexander Chuykov

State University of Aerospace Instrumentation
St-Petersburg, Russia

November 1, 2009
1 Video transmission
 - Video transmission schema
 - Error protection for video
 - Model of channel
 - Improved model for simulation

2 Testing equipment
 - Methods
 - PSNR vs. SSIM
 - Video encoder

3 Research
 - Results & bits classification
 - RD, Claire
 - RD, Trueman
Outline

1. Video transmission
 - Video transmission schema
 - Error protection for video
 - Model of channel
 - Improved model for simulation

2. Testing equipment
 - Methods
 - PSNR vs. SSIM
 - Video encoder

3. Research
 - Results & bits classification
 - RD, Claire
 - RD, Trueman
Video transmission schema

- Transmitters and receivers
- Wire and wireless channels
1 Video transmission
 - Video transmission schema
 - Error protection for video
 - Model of channel
 - Improved model for simulation

2 Testing equipment
 - Methods
 - PSNR vs. SSIM
 - Video encoder

3 Research
 - Results & bits classification
 - RD, Claire
 - RD, Trueman
Error protection for video

- Error protection for stream
 - Effective
 - No priority
Error protection for video

- Error protection for stream
 - Effective
 - No priority
- Error protection during video encoding (e.g. RVLC)
 - Partly protection
 - Compatibility loosing
Error protection for video

- Error protection for stream
 - Effective
 - No priority
- Error protection during video encoding (e.g. RVLC)
 - Partly protection
 - Compatibility loosing
- Idea! Error protection for separated substream ⇒ Protection depends on substream significance
Outline

1. Video transmission
 - Video transmission schema
 - Error protection for video
 - Model of channel
 - Improved model for simulation

2. Testing equipment
 - Methods
 - PSNR vs. SSIM
 - Video encoder

3. Research
 - Results & bits classification
 - RD, Claire
 - RD, Trueman
Model of channel

- Video encoder and decoder
Model of channel

- Video encoder and decoder
- Model of channel to produce errors with known distribution
Model of channel

- Video encoder and decoder
- Model of channel to produce errors with known distribution
- Statistics acquisition software
Model of channel

- Video encoder and decoder
- Model of channel to produce errors with known distribution
- Statistics acquisition software

⇒ Not useful
Outline

1. Video transmission
 - Video transmission schema
 - Error protection for video
 - Model of channel
 - Improved model for simulation

2. Testing equipment
 - Methods
 - PSNR vs. SSIM
 - Video encoder

3. Research
 - Results & bits classification
 - RD, Claire
 - RD, Trueman
Improved model for simulation

- Join channel model and decoder
 - The encoder’s source is not change (+compatibility, +performance)
Improved model for simulation

- Join channel model and decoder
 - The encoder’s source is not change (+compatibility, +performance)
 - Only one copy of compressed video-sequence is required for all experiments (+performance)
Improved model for simulation

- Join channel model and decoder
 - The encoder’s source is not change (+compatibility, +performance)
 - Only one copy of compressed video-sequence is required for all experiments (+performance)
 - Decoding is more faster than encoder (+performance)
Improved model for simulation

- Join channel model and decoder
 - The encoder’s source is not change (+compatibility, +performance)
 - Only one copy of compressed video-sequence is required for all experiments (+performance)
 - Decoding is more faster than encoder (+performance)
- **Limitation**: The error positions are vary (*easy to avoid*)
Outline

1. Video transmission
 - Video transmission schema
 - Error protection for video
 - Model of channel
 - Improved model for simulation

2. Testing equipment
 - Methods
 - PSNR vs. SSIM
 - Video encoder

3. Research
 - Results & bits classification
 - RD, Claire
 - RD, Trueman
Methods

- Rate-distortion compare
Methods

- Rate-distortion compare
- The objective metrics
 - PSNR (Peak Signal-to-Noise Ratio)
 - SSIM (structural similarity)
Methods

- Rate-distortion compare
- The objective metrics
 - **PSNR** (Peak Signal-to-Noise Ratio)
 - SSIM (structural similarity)
- Video sequences
 - Claire (slow motion)
 - Trueman (fast motion)
Outline

1. Video transmission
 - Video transmission schema
 - Error protection for video
 - Model of channel
 - Improved model for simulation

2. Testing equipment
 - Methods
 - PSNR vs. SSIM
 - Video encoder

3. Research
 - Results & bits classification
 - RD, Claire
 - RD, Trueman
PSNR vs. SSIM

<table>
<thead>
<tr>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE based</td>
<td>Compares intensity group of pixels</td>
</tr>
<tr>
<td>Compares pixels</td>
<td>Uses window (size $M \times M$) for compare</td>
</tr>
<tr>
<td>Low complexity $\Theta(w \times h)$ and low memory usage (some cells)</td>
<td>High complexity $5O(M \times w \times h) + 17\Theta(w \times h)$ and high memory usage $\approx 7 \times w \times h$ cells</td>
</tr>
<tr>
<td>The high bound is undefined ($+\infty$)</td>
<td>Normalized from 0 (worst) to 1 (best)</td>
</tr>
<tr>
<td>Same behavior for high bitrates</td>
<td></td>
</tr>
<tr>
<td>Prefer for high bitrates usage</td>
<td>Large proportional range for low bitrates</td>
</tr>
</tbody>
</table>
Outline

1. Video transmission
 - Video transmission schema
 - Error protection for video
 - Model of channel
 - Improved model for simulation

2. Testing equipment
 - Methods
 - PSNR vs. SSIM
 - Video encoder

3. Research
 - Results & bits classification
 - RD, Claire
 - RD, Trueman
Video encoder

Video encoder

- Profiles from cellular up to home theater
Video encoder

- Profiles from cellular up to home theater
- Simulation options
 - VLC instead CABAC
 - RTP (RFC1889) encapsulation
Outline

1. Video transmission
 - Video transmission schema
 - Error protection for video
 - Model of channel
 - Improved model for simulation

2. Testing equipment
 - Methods
 - PSNR vs. SSIM
 - Video encoder

3. Research
 - Results & bits classification
 - RD, Claire
 - RD, Trueman
Results & bits classification

- H.264 has not error protection
Results & bits classification

- H.264 has not error protection
- Probability of channel error more than 10^{-6} halts decoder
Results & bits classification

- H.264 has no error protection
- Probability of channel error more than 10^{-6} halts decoder
- Bits classification
 - Fatal – halts decoder
 - Nonfatal – corrupt image
Results & bits classification

- H.264 has not error protection
- Probability of channel error more than 10^{-6} halts decoder
- Bits classification
 - Fatal – halts decoder
 - Nonfatal – corrupt image

⇒ The quantity of fatal bits determine the significance of the substream
Results & bits classification

- H.264 has not error protection
- Probability of channel error more than 10^{-6} halts decoder
- Bits classification
 - Fatal – halts decoder
 - Nonfatal – corrupt image

⇒ The quantity of fatal bits determine the significance of the substream
⇒ Code protection options depend on significance of the substream
Outline

1 Video transmission
 - Video transmission schema
 - Error protection for video
 - Model of channel
 - Improved model for simulation

2 Testing equipment
 - Methods
 - PSNR vs. SSIM
 - Video encoder

3 Research
 - Results & bits classification
 - RD, Claire
 - RD, Trueman
Outline

1. Video transmission
 - Video transmission schema
 - Error protection for video
 - Model of channel
 - Improved model for simulation

2. Testing equipment
 - Methods
 - PSNR vs. SSIM
 - Video encoder

3. Research
 - Results & bits classification
 - RD, Claire
 - RD, Trueman
RD, Trueman
Thanks

- Any questions?