Security vulnerability found in On-

!'_Board Credentials validation activity

Afanasyeva Alexandra, SUAI
Ekberg Jan-Erik, NRC
alra@vu.spb.ru

i Background

On-Board Credentials is a framework by Nokia Research

Center for secure execution of third-party credentials on e.g.

embedded devices

The framework also includes a provisioning protocol by
which any third part can provision credentials onto the
platform

A Fruct project (SUAI) was set up to analyze parts of the
framework, among other things the provisioning protocol

A vulnerability was found by which the integrity of the
provisioned 3rd-party credentials programs could be
compromised

The implementation of ObC was changed to correct the
found security vulnerability

2/11

‘L OnBoard Credential Platform

OnBoard
Credential
Platfor

3/11

i Provisioning Protocol

= Goal: To allow any entity to provision secure
data and program on the device.

= Steps:

= User send to device
= Init = header || Ency p(FK)
= Xfer = AE.(header, <secret>)
= Xfer = AE;(header, <program>) or <program>
» Endorse = AE. (header, H(<program>))

= Device:

= If program wants to read secret it should have

appropriate Endorse
4/11

i Attack on Provisioning Protocol

s Intruder

= Sniffs Endorse = AE(FK, header,
H(<programl>))
= generates program2 for disclosing of secret
= generates program?2 in such a way that
H(<program2>)= H(<programl>)
Problem statement:

Find second pre-image for hash-function used
in provisioning protocol

5/11

i Cryptographic Primitives

= There is a restriction on size of code which
implements all cryptographic functions
(encryption, hash, ...)

= S50, only one crypto-primitive (AES-EAX) was
used as basis for all these functions
» Authenticated encryption

AE = AES — EAX (key, header,nonce, data)

= Hash function
HASH = AES — EAX (public _hash _key,data)

6/1

i AES-EAX Encryption Mode

s X = {X{,X5, .. X}

, T L oMAC (=S
OMAC] | OMACL xn — xn (_D pad,co — O
. [— fori=1ton
¢ = AESENC (x, @c)
| o | return(c,) }
-:}n..{'m:;’ﬂr
| s CTR(X,N) ={
: fori=1ton
% | c,=x, @ AES." (N +1i)

return(c,,C,,...,C,) }

7/11

i Hash Function Vulnerability

» Given: " Find:
« M, Hash(M)=T ol 1 -
= Arbitrary Hash(M'|| m,¢) =T

M'={m;, m, ... m_}

The only restriction on M’ is |M’| =n*128

8/11

Finding m__ ,

.y =(AES (T®OMAC, (0) ®OMAC,,(0)) ®OMAC (CTRyg, (M, N)) ® padd | ®

o MM 0 1) @ AESEE (N+n)
IZ}MIAGE; UMIAG}.; C:((M',/V)) ”
| AES; (T®OMAC, (0) ®OMAC,, (0)) €
N | CTRg 1)
@OMAC,, (CIR,(M',N))| @ pad
| T | 2)
OMACE | 2) C =T@®OMAC,, (0)®OMAC,, (0)
e 3)
3) . Hash =T

—] o/t

i Conclusions

= A good, and flawless security design in the
end benefits the customer

+ independent design validation

+ validating implementations prior to deployment
can find problems before they occur in the field

+ build in-field upgradeability

= The correct use of cryptographic primitives is
often essential

10/11

‘L Thank you!

Q&A

